NPS-EC-96-012

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Automatic Meshing of CAD Ship Files for Use
with Numerical Electromagnetics Codes

by

David C. Jenn

Fuly 1996

DTIC QUALITY INTW“FTTD 2

Approved for public release; distribution is unlimited.
Prepared for: Commander, Space and Naval Warfare Systems Command

Code PMW 163
Arlington, VA 22245-5200

19960917 023

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral M.J. Evans R. Elster
Superintendent Provost

This report was prepared for and funded by SPAWAR PMW163.
Reproduction of all or part of this report is authorized.

The report was prepared by:

W C‘ g&bvv
(4
DAVID C. JENN
Associate Professor

Department of Electrical and
Computer Engineering

Reviewed by: Released by:
HERSCHEL H. LOOMIS, JK. DAVID W. NETZER/
Chairman Associate Provost and

Department of Electrical and Dean of Research
Computer Engineering :

REPORT DOCUMENTATION PAGE on T Approved

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204 Arlington VA 22202-4302 _and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188). Washington DC 20503.

2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
July 15, 1996 October 1, 1994 to July 1, 1996

1. AGENCY USE ONLY (Leave blank)

4. TITLE AND SUBTITLE ' ' 5. FUNDING NUMBERS
Automatic Meshing of CAD Ship Files for Use with Numerical

Electromagnetics Codes

6. AUTHOR(S)

David C. Jenn
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER
Naval Postgraduate School
Monterey, CA 93943-5000 NPS-EC-96-012
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

SPAWAR PMW163
2451 Crystal Park 5
Arlington, VA 22245-5200

11. SUPPLEMENTARY NOTES

The views expressed in this report are those of the author and do not reflect the official policy or
position of the Department of Defense or the United States Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

Computer aided design (CAD) is routinely employed in the structural and mechanical design of
ships and aircraft. With relatively minor modifications, the same geometry databases can be used
by computational electromagnetics (EM) codes for antenna and radar cross section analysis. A
step-by-step procedure is described to obtain triangular facet models derived from CAD data files.
The facet models can be used by EM codes such as PATCH and NEC. Computer code listings of
translation software and instructions for use are included.

14. SUBJECT TERMS 15. NUMBER OF PAGES
98

16. PRICE CODE

Computational electromagnetics, CAD

17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION [19. SECURITY CLASSIFICATION | 20. LIMIITATION OF
OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAR

NSN 7540-01-280-5500 STANDARD FORM 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18 298-102

Table of Contents

1.0 INTRODUCTION
2.0 CAD PROGRAMS
2.1 ACAD GENERAL DESCRIPTION
2.2 AUTOCAD GENERAL DESCRIPTION
2.3 IGES FILES
2.3.1 INTRODUCTION
2.3.2 IGES FOR AUTOCAD
2.3.3 IGES FOR ACAD
2.4 ACAD GENERIC FACET FILE
2.5 SHIP CAD FILES
3.0 PATCH
3.1 PATCH GENERAL DESCRIPTION
3.2 PATCH INPUT FILE FORMAT
3.3 PATCH CODE MODIFICATIONS
3.3.1 INPUT/OUTPUT
3.3.2 FACET CHECKING SUBROUTINE
4.0 VIEWING GEOMETRY FILES
4.1 INTRODUCTION
4.2 VIEW USING BUILDN5
4.3 VIEW USING ACAD
4.4 VIEW USING MATLAB
5.0 TRANSLATORS AND COMPUTER CODES
5.1 INTRODUCTION
5.2 ACAD-TO-PATCH TRANSLATOR,
5.3 PATCH-TO-ACAD TRANSLATOR
5.4 PATCH-TO-NEC TRANSLATOR
5.5 FILE CHECKING USING KNIT
6.0 AUTOMESHING PROCEDURE
REFERENCES
APPENDICES
APPENDIX A: FACET CHECKING CODE

APPENDIX B: ACAD-TO-PATCH TRANSLATOR CODE
APPENDIX C: PATCH-TO-ACAD TRANSLATOR CODE
APPENDIX D: PATCH-TO-NEC TRANSLATOR CODE
APPENDIX E: PATCH INPUT CHECKING CODE (KNIT)
APPENDIX F: GEOMETRY FILE BUILDER (BLDMAT)
APPENDIX G: MATLAB GEOMETRY VIEWER (PLTPATCH)

INITIAL DISTRIBUTION LIST

S Ot Ot W NN

15
15
15
21
25
26
26
29
29
30
30
30
30
30
31
31
31
33
33
37

38
44
56
64
66
78
89
92

1.0 INTRODUCTION

Computer aided design (CAD) has become a standard tool used both by the Navy
and contractors in the design of ships. Detailed ship drawings are generated with CAD
software such as AutoCAD. The advantage is that modification and redesign are rel-
atively easy because of the associativity of entities (i.e., points, lines, circles, surfaces,
etc.). The CAD database contains the relationships between all entities. Therefore,
the secondary effects of modifying an edge, for example, are automatically accounted
for when other structures that contain the modified edge are generated.

The ability for rapidly modifying a structure is ideal for concurrent engineering,
that is, the simultaneous design of a system by all engineering disciplines. Electro-
magnetic (EM), fluid, and structural designers can all use the same CAD database
for their analyses. Any changes made to the system are immediately available to all
engineers.

For the electromagnetic design of systems, several computer codes are available
to government agencies and contractors that use triangular facet models of bodies
to define scattering and radiation structures. They include PATCH, CARLOS-3D,
and FERM ([1-3], all of which are written in the FORTRAN language. FERM has its
own preprocessing program to generate geometry files. Furthermore, it uses binary
data files which are not easily transportable between computer codes and systems.
CARLOS-3D can use geometry files generated by the CAD program ACAD without
modification. However, CARLOS-3D can only solve scattering problems, not radia-

~ tion (antenna) problems. PATCH is capable of solving both scattering and radiation

problems. It uses an ASCII input file that defines the body on the basis of edge
connections (as opposed to triangle connections). The edge definition approach can
be ambiguous in some isolated (but predictable) special cases.

For the primary application considered here, high frequency (HF) ship antenna
analysis, PATCH has been found to be most useful. However, PATCH has only a
basic geometry preprocessor capable of simple shapes such as plates, cylinders, cones,
and spheres. The data for more complex shapes must be input by hand. It involves
defining the nodes of every triangle on the body and specifying an edge connection
list. Ship models that are meshed for use up to 30 MHz have about 3000 nodes
(triangle vertices) and 5000 edges. In this case, data entry itself is a major effort.
Furthermore, if a ship modification is to be investigated, portions of the structure
may have to be remeshed and re-input, which again represents a major effort. It
is apparent that for computational EM codes to be practical engineering tools, an
efficient surface meshing operation must be available.

The CAD application ACAD (Advanced Computer Aided Design) is capable of
performing the desired automeshing. Databases from other CAD programs can be
imported into ACAD and then meshed and output in a special “facet” format. The
facet file is ASCII and contains the node and facet information required by PATCH,
although it is not is the proper format. An ACAD-to-PATCH translator was written
to reformat the facet file into one that is recognized by PATCH. Therefore, it is now
possible to take a NAVSEA CAD file, mesh it automatically in ACAD, and then use
the output to run PATCH.

This report summarizes the development of the automeshing process and the
step-by-step procedure to go from a CAD drawing file to PATCH input file. First an
overview is given of the two CAD applications used here: ACAD and AutoCAD. The
automeshing procedure is described, and special file format translation software is
also presented. Finally, some shipboard applications are discussed and a few helpful
hints and guidelines are given.

2.0 CAD PROGRAMS
2.1 ACAD GENERAL DESCRIPTION!

ACAD (Advanced Computer Aided Design) [4-5] provides users with the abil-
ity to create and modify geometry in two- or three-dimensions. Users can choose
to model geometry with wireframes, surfaces, or solids. ACAD is the primary tool
used by Lockheed Fort Worth Company’s Advanced Programs for configuration and
subsystem design of new and existing aircraft programs. ACAD’s primary role is the
generation of geometry and some limited analysis. Much of the analysis performed
within ACAD is geometrical analysis. For other types of analysis, ACAD generates
interface files for transferring to groups who specialize in a particular analysis field
such as Radar Cross Section (RCS), Aero, or Computational Fluid Dynamics (CFD).

Inputting data to ACAD is accomplished through one of many input modes avail-
able to the designer. Example options include digitizing locations, entering explicit
coordinate values, snap to grid, and intersections. Each entity (splines, lines, points,
surfaces, etc.) can have individual color, width, and style attributes. Logical group-
ings of entities can be separated and managed with layers, groups, and blanking.
ACAD models can be viewed orthographically or in perspective. Users can specify
view orientation and choose to display geometry in multiple window configurations.
Window operations such as panning, zooming, and auto extents are accomplished at
any time providing instream capability. The ACAD user can also control the display

IMost of the material in this section is taken directly from reference 4

of surfaces or solids with options as wireframe, hidden line removal, flat, or Gouraud
shading.

At the heart of the ACAD system is the associative database. In an associa-
tive database, geometry is linked together in a relational structure that remembers
parent/child dependencies. This type of database enables rapid modifications of ge-
ometry, since modifying one geometric element automatically adjusts its dependencies
based on a set of predefined rules. For instance, changing a control spline of a fuse-
lage will automatically regenerate any surface(s) built with the spline. In turn, any
geometry that is associated to the fuselage surface (i.e., plane/curve and surface in-
tersections, fillets) will automatically regenerate.

Within ACAD exists a read/write Initial Graphics Exchange Specification (IGES)
translator. The IGES translator allows ACAD the ability to exchange drawing data
with other CAD systems that support IGES. Example CAD systems include CAD-
CAM, CATIA, COMPUTERVISION, and AutoCAD.

The ACAD system also supports a binary data file converter. This built in con-
verter enables a binary file created on the SUN to be read in directly on a Silicon
Graphics or Apollo workstation without having to convert to a neutral ASCII file.
This utility is extremely beneficial to projects supporting a mixture of workstations
and using a transparent networking system. Hardcopy output is available on a variety
of devices accessed through ACAD. Additional features of the system are:

1. Three-dimensional lines drawings
2. Analysis geometry models
3. Three- and Five-View drawings

Table 1 contains more information on the types of commands available on ACAD
Version 9.0.

2.2 AUTOCAD GENERAL DESCRIPTION 2

The capabilities of AutoCAD? [6] are similar to those of ACAD. AutoCAD is one
of the most widely distributed CAD programs, and runs on all platforms (UNIX,
DOS and Windows, and Macintosh). As in the case of ACAD, the effect of every
change made to a drawing appears immediately on screen.

ZMost of the material in this section is taken directly from reference 6
3Frequently the AutoCAD suite of programs is collectively referred to as ACAD. This terminology
is not used here to avoid confusion with the ACAD discussed in Section 2.1.

' Table 1: Summary of ACAD Commands

Transformations

Scale
Translate
Rotate
Mirror

Copy

Display Options

1026 User Defined Layers

Blank On, Off, and On Only

Color, Style, and Width Line Fonts
Hidden Line, Flat, and Gouraud Shading
Auxiliary Viewing

Orthographic or Perspective Viewing
Multiple Windows (up to 6)

Dynamic Viewing

Zooming, Panning, and Auto Extents

Input Options

Digitize

Reference Existing Data Points
Key in Explicit z, y, 2z
Intersection

Point On

Snap to Grid

Hierarchical Input Mode

Intersections
Curve-Curve
Curve-Plane
Curve-Surface
Plane-Surface
Surface-Surface
Curve Projections onto Surfaces

Drafting Utilities

Break, Trim, and Join Curves
Corner

Grouping

Construction Planes

Local Coordinate Systems
Offsets

Text and Dimensions
Groups, Dittos, and Details
Crosshatching

Three Dimension Design

Point, Line, and Spline Primitives
Conic, Circles, and Ellipses Primitives
Six Forms of Surfaces

Curve and Surface Editing

Trimmed Surfaces (Faces)

Mass Properties (volumes, CGS, areas)
Offset Surfaces

Wireframe, Surface, & Solid Modeling

AutoCAD functions lets the user modify the drawing in a variety of ways. En-
tities can be erased or moved, or copied to form repeated patterns. The user can
change the view of the drawing displayed on screen, or display information about the
drawing. AutoCAD also provides drawing aids that allow the positioning of entities
accurately. The simple command format of AutoCAD allows the user to accomplish
most of the functions in Table 1. One important exception is the inability to generate
a shell mesh. Therefore, automeshing must be performed in ACAD.

2.3 IGES FILES
2.3.1 INTRODUCTION

The AutoCAD and ACAD support translation of drawings to and from the Initial
Graphics Exchange Specification (IGES). IGES is a public-domain data specification
intended as an international standard for the exchange of information between CAD
systems.* An IGES translator is written specifically for a given CAD program but,
in principle, enables drawings to be transferred to and from other CAD systems that
also support IGES (in IGES, these are known as sending and receiving systems).

Files created using the IGES format will consist of at most six sections of in-
formation, five of which are mandatory. These sections must exist in the following
order:

1. Flag Section (not always present)
This section of the IGES file signals the format used to write the file. The

absence of this section is interpreted to mean that the normal ASCII format
was used when creating the file.

2. Start Section
The Start Section is intended to be a human-readable prologue containing com-
ments about the IGES file.

3. Global Section

The Global Section of the IGES file contains information about the CAD system
that created the file and information that should be considered by the CAD
system interpreting the file before the IGES file is processed.

4. Directory Entry Section

The Directory Entry Section consists of one two-line entry for each entity de-
scribed by the IGES file.

“For a complete description of IGES, see reference 7.

5

5. Parameter Data Section

The Parameter Data Section of the IGES file contains the geometric information
that will be used to reconstruct each entity.

6. Terminate Section

The goal of an IGES translation is to preserve the geometry and functionality of
entities in a CAD drawing or an IGES file. This process does have limits. As with all
translation, concepts that can be expressed precisely in one language may not have
exact equivalents in another language; conversely, concepts common to two languages
may be expressed differently by each. The situation applies as much to CAD data
as to natural languages. When entities have no direct correspondence between IGES
and the entities in a particular CAD program, the translator maps them to similar
constructs that attempt to preserve as much data as possible.

For example, IGES has no direct equivalent to an AutoCAD tapered polyline. To
translate a tapered polyline, AutoCAD creates an IGES Composite Curve segment
whose width is the average of the polyline’s starting and ending widths. Similarly,
AutoCAD has no counterpart to the IGES Parametric Spline Surface, so AutoCAD
approximates these entities with 3D meshes.

Many drawings can be translated with little or no loss of data, but even in this
case, the entities used to represent the drawing may change in translation. This means
that IGES is not fully symmetrical: reading an IGES file with the same program that
was used to create it does not necessarily lead to a drawing that is identical to the
original. The more complex the drawing, the more likely that information will have
to be approximated (this applies especially to drawings that are heavily annotated or
hierarchically organized, or that use complex three-dimensional entities). For a one-
time translation to or from IGES, this may not pose a great problem. If, however,
one is concerned with maintaining drawings that must be translated between the two
systems over a period of time, it is necessary to be familiar with the details of both
the send and receive translators as well as the details of IGES formats.

IGES has been distributed in successive versions, with each version providing ad-
ditional features and enhancements to existing features. Because it is intended as a
long-term standard, a new IGES version attempts to support all features that have
been officially part of any earlier version.

2.3.2 IGES FOR AUTOCAD

The AutoCAD IGESIN and IGESOUT commands support translation of draw-
ings to and from IGES. AutoCAD generates files that are compatible with IGES 4.0.

6

It can successfully read files that conform to the IGES 2.0, 3.0, and 4.0 file formats
provided they employ the fixed-length ASCII form. IGES entities supported by Au-
toCAD are shown in Figures 1 and 2.

2.3.3 IGES FOR ACAD

ACAD has the ability to transfer a drawing to other systems by creating a file
having the IGES format. Limitations on the transfer of drawings are a result of
the limitations of the IGES translators of both the sending and receiving systems.
The ACAD/IGES translator is used to transfer drawings between ACAD and other
systems such as CADAM, CATIA and AutoCAD. The ACAD/IGES translator was
created using the methodology described [7].

Entities which are supported by the current version of the ACAD/IGES translator
are listed in Figures 3 and 4. Several points should be noted when using the ACAD
system to translate drawings to and from the IGES file format:

1. When writing an IGES file from ACAD, entities which are confined to a single
plane are represented as an IGES entity constructed in the XY plane with
an associated transformation matrix to translate the entity to the appropriate
plane.

2. Spline entities written from ACAD into the IGES format can be represented as
either IGES type 112 (Parametric Spline Curve) or type 126 (Rational B-Spline
Curve) depending on the selection of the buttons under the “Spline Types:”
section of the “Write IGES File” dialog box. If the button “Parametric” is
selected, all spline entities will be written as type 112; otherwise, all spline
entities will be written as type 126.

3. The method in which a Surface entity is written into IGES format from the
ACAD system will depend on the setting of the “Surface Type:” buttons in the
“Write IGES File” dialog box.

4. When writing ACAD Face entities into the IGES format, several IGES entities
are created. The Face entity is represented as type 144 (Trimmed (Parametric)
Surface) which consists of boundary curves that are represented by type 142
(Curve on a Parametric Surface). Boundary curves, in turn, are created through
type 102 (Composite Curve), which links together simple entities such as points,
lines, circles, splines, conics, and ellipses, forming a closed curve.

0 (Null)
100 (Circular Arc)

102 (Composite
Curve)

104 (Conic Arc)
106 (Copious Data)

108 (Plane)

110 (Line)

112 (ParametricSpline
Curve)

114 (Parametric Spline
Surface)

116 (Point)
118 (Ruled Surface)

120 (Surface Of
Revolution)

122 (Tabulated
Cylinder)

124 (Transformation
Matrix)

125 (Flash)

126 (Rational B-Spline
Curve)

128 (Rational B-Spline
Surface)

130 (Offset Curve)
132 (Connect Point)
134 (Node)

136 (Finite Element)

138 (Nodal Displace-
ment & Rotation)

140 (Offset Surface)

.142 (Curve On A
Parametric
Surface)

144 (Trimmed
Parametric
Surface)

146 (Nodal Result)
148 (Element Results)
150 (Block)

152 (Right Angular
Wedge)

154 (Right Circular

Supported.
Supported.
Supported.

Supported: IGESIN approximates this with a Polyline.

Partially supported: IGESIN discards vectors for Forms
3 and 13. IGESOUT translates AutoCAD Traces and
Solids- (that are not extruded) into IGES Simple
Closed Area entities (106 Copious Data, Form 63).
This loses their solid-fill information, but retains
their area information.

IGESIN uses unbounded planes (Form 0) for clipping
IGES View entities (410). Bounded planes (Forms 1
and 1) are translated by generating a Polyline from
the bounding curve.

Supported.

Partially supported: IGESIN approximates this with a
Polyline.

Partially supported: IGESIN approximates this with a
3D Mesh.

Supported.
Supported.
Supported.

Supported. See the section “Extruded Entities” on
page 18.

Supported.
202 (Angular Supported.
Not supported. Dimension) o
Supported. 206 (Diameter Supported.
Dimension) :
Not supported. 208 (Flag Note) Supported.
210 (General Label) Supported.
Not supported. 212 (General Note) Supported.
Not supported.
214 (Leader) Supported.
Not ted.
ot supporte 216 (Linear Supported.
Not supported. Dimension)
Not supported. 218 (Ordinate Supported.
Dimension)
Not supported. 220 (Point Dimension) Translated to AutoCAD Block.
Not supported. 222 (Radius Supported.
Dimension)
228 (General Symbol) Supported.
Not supported. .
230 (Sectioned Area) Not supported.
Not supported.
Not supported.
Not supported.
Not supported.

Not supnorted.

Figure 1: IGES to AutoCAD conversion table.

- - -

302 (Associativity
Definition)

304 (Line Font
Definition)

306 (MACRO
Definition)
308 (Subfigure -
Definition)
310 (Text Font
Definition)
312 (Text Display
Template)
314 (Color
Definition)

320 (Network
Subfigure
Definition)

322 (Attribute Table
Definition)

402 (Associativity
Instance)

- 404 (Drawing)
406 (Property)

408 (Singular
Subfigure
Instance)

410 (View)

412 (Rectangular
Array Subfigure
Instance)

414 (Circular Array
Subfigure
Instance)

416 (Externat
Reference)

418 (Nodal
Load/Constraint)
420 (Network

Subfigure
Instance)

422 (Attribute Table
Instance)

430 (Solid Instance)

600-699 (
MACRO Instance)

5001-9999
(Implementor-
Defined)

10000-99999
(MACRO
Instance)

Not supported.

Output by IGESOUT if necessa‘ry. Partially supported
by IGESIN.

Not supported.
Supported.

Not supported.
Not supported.
Not supported.

Not supported. -~

Not supported. Instead of creating Attribute Table
Definitions, IGESOUT translates AutoCAD Attributes
into a pair consisting of a General Note and a Prop-
erty entity, and attaches these as Subfigure references
(see section 2.2.4.4.2 of the IGES 5.1, and the section
“Attributes” on page 18). ’

IGESIN supports Forms 1, 3, 4, 7, 13, 14, 15, and 16.
IGESOUT supports Form 3.

Supported.

Partial support: see the section “Attributes” on
page 18.

Supported.

Supported.
Supported, except that IGESIN does not support the
DO-DON'T flags.

Not supported.

Supported. See the section “External References” on
page 23 and “External Reference — 416" on page 40.
Not supported.

Not supported.

Not supported.

Not supported.
Not supported.

IGESOUT uses form 7901 for Block Attributes.

Not supported.

Figure 2: IGES to AutoCAD conversion table (continued).

IGES IGES ACAD
Entity Number Description Entity
100 Arc _ Arc/Circle
102 Composite Curve any combination of : point, line, circle
spline, conic, offset
104 Form 0-3 Conic Arc Conic/Ellipse
106 Form 1,2,11,12 Copious Data any combination of : point, line
20,21,31-38,40,63

108 Form 0 Plane Plane

110 Line Line

112 Parametric Spline Spline

114 Parametric Spline Surface Arbitrary Surface

116 Point Point

118 Form 1 Ruled Surface Ruled Surface

120 Surface of Revolution Surface of Revolution

122 : Tabulated Cylinder Ruled Surface

124 Form 0 Transformation Matrix N/A

126 Form 0 Rational B—Spline Curve Spline

128 Form 0 Rational B—Spline Surface Arbitrary Surface

130 Offset Curve Spline

142 Curve on a Parametric Surf. any combination of : point, line, circle,
(only sub—entity of 144) spline, conic, offset

144 Trimmed (Param.) Surface Face

202 Angular Dimension Angular Dimension

206 Diameter Dimension Diameter Dimension

210 General Label Label Dimension

212 Form 0,2—8 General Note Text

214 Form 2,4 Leader (Arrow) Arrow Dimension

216 Linear Dimension Vertical/Horizontal/Parallel Dimension

218 Ordinate Dimension Vertical Call Out/Horizontal Call Out/

Label Dimension
220 Point Dimension Vertical Call Out/Horizontal Call Out/
: Label Dimension

222 Radius Dimension Radial Dimension

308 Subfigure Definition Detail

402 Form 1,3,4,7, Associativity Instance Views, Sets

14,15 ’

404 Drawing Parent View (limit 3 per file)

406 Form 15 Name Names Details

408 Singular Subfigure Instance Ditto

410 View Auxiliary View

Figure 3: IGES to ACAD conversion table.

10

ACAD IGES Entity IGES
Entity Number Description
Geometric:
Point 116 Point
Line 110 Line
Circle/Arc 100 Arc*
Spline 112 Parametric Spline or
126 Form 0 Rational B—Spline Curve
Conic 104 Form 0,3 Conic Arc *
Ellipse 104 Form 1 Conic Arc *
Plane 108 Form 0 Plane
Surface Identities:
PolyConic, Fillet 114 Parametric Spline Surface or
128 Form 0 Rational B—Spline Surface
Ruled 118 Form 1 Ruled Surface or
114 Parametric Spline Surface or
128 Form 8 Rational B—Spline Surface
Surface of Revolution 120 Surface of Revolution or
114 Parametric Spline Surface or
128 Form 0 Rational B—Spline Surface
Sculptured, Arbitrary, Offset 114 - Parametric Spline Surface or
128 Form 0 Rational B~Spline Surface
Face 144 Trimmed (Param) Surf. and
142 Curve on a Param. Surf. and
102 Composite Curve
Solids:
Polyhedral . Not Implemented
Volume Not Implemented
Primitive Not Implemented
Annotation:
Text 212 Form 0,6,7,8 General Note
Dimensions:
Horizontal, Vertical, Parallel 216 Linear Dimension %
Angular 202 Angular Dimension %
Radial 222 Radius Dimension %
Diameter 206 Diameter Dimension %
Label, Textline 210 General Label %
Arrow 214 Form 2,4 Leader (Arrow)
Station Label 218 Ordinate %
View Call Out 110 Lines and
212 General Note
Structures:
Detail 308 Subfigure Definition *
Ditto 408 Singular Subfigure Instance
Aux Views 410 View
Parent View) 404 Drawing

written in the XY plane with attached Transformation Matrix (124 Form 0).

% entity contains pointers to the corresponding General Note (212), Witness Lines (106
Form 40), Arrows (214), and Transformation Matrix (124 Form 0).

Figure 4: IGES to ACAD conversion table (continued).

2.4 ACAD GENERIC FACET FILE

The ACAD Generic Facet file is an ASCII file containing faceted (polygonal) data
as well as edge, vertex, and surface normal data. The files are named with the “ facet”
suffix. The convention for surface normals is to point away from the interior of the
part. The triangular facet shape is the only one currently supported. The Generic
Facet format version V3.0 is described below:

Line A: Revision Date/Time Machine
Revision = File format version;
Date/Time = Date and time of creation;

Machine = Hardware platform of origin.

Line B: NP

NP = Number of parts in file.

Line C: Part Name

Part Name = Name of current part.

Line D: MIRROR (A B C D)
MIRROR = Mirrored about a plane?

(if not mirrored about a plane then MIRROR = 0 and A, B, C, D, are not
present)

Line E: NV

NV = Number of vertices in current part.

Line F: XY?Z
(XY Z) = 3-D Cartesian point:
(there will be NV copies of this line).

Line G: NSP

NSP = Number of subparts in current part.

12

Line H: Sub-Part Name

Sub-Part = Name of the current subpart.

Line J: ET NSE NSV EM2 VP VN EC
ET = Type of element (Triangle = 3);
NSE = Number of elements in current subpart — always # 0;
NSV = Number of vertices in the current subpart # 0 if VP = 1 or VN = 1;

EM2 = Parameter set to 1 if 2-sided materiel fields have been defined, and 0
otherwise:

When set to 1, Line N will have 3 material fields, instead of 1. In these
fields, M will describe the material associated with the element only, M1
will describe the material associated with the plus normal side of the el-
ement and M2 the material associated with the minus normal side of the
elements.

VP = Parameter set to 1 if vertex parameters are present, and 0 otherwise:
Line K is present in the file only when this parameter is set to 1.

VN = Parameter set to 1 if vertex normals are present, and 0 otherwise:
Line L is present in the file only when this parameter is set to 1.

EC = Parameter set to 1 if element curvature lines are present, and 0 otherwise:

Line M is present in the file only when this parameter is set to 1.

Line K: UV VID

(U V) = Parametric vertex coordinate — there will be NSV copies of this line
if VP = 1;

VID = Vertex ID referencing the part vertex list.
Line L: Nx Ny Nz VID
(Nx Ny Nz) = 3-D unit vector pointing away from the interior of the part:
(there will be NSV Copies of this line if VN = 1)

VID = Vertex ID referencing the part vertex list.

13

Line M: Min Max MnVx MnVy MnVz MxVx MxVy MxVz
Min/Max = The principal curvatures computed at the facet center
(positive values indicate surface bending towards the normal)

MnVx MnVy MnVz = A 3-D unit vector pointing in the direction where cur-
vature is a minimum;

MxVx MxVy MxVz = Points in the direction of maximum curvature.
(MnV x MxV = N)
(there will be NSE copies of this line if EC = 1)

Line N: V1V2M

V1, V2 = Indices of subpart vertices if NSV # 0, otherwise indices of part
vertices;

M = Fields to describe properties associated with this element

(there will be NE copies of this line if ET = 2)

Line N: V1 V2 V3 M (M1 M2)

V1, V2, V3 = Indices of subpart vertices if NSV # 0, otherwise indices of part
vertices;

M (M1 M2) = Fields to describe material properties associated with this element
(there will be NE copies of this line if ET = 3)

Line N: V1 V2V3V4M (M1 M2)

V1, V2, V3, V4 = Indices of subpart vertices if NSV =# 0, otherwise indices of
part vertices;

M (M1 M2) = Fields to describe material properties associated with this element
(there will be NE copies of this line if ET = 4)

Line N: V1 V2 V3 V4 V5V6M (M1 M2)

V1, V2, V3, V4, V5, V6 = Indices of subpart vertices if NSV # 0, otherwise
indices of part vertices;

14

M (M1 M2) = Fields to describe material properties associated with this element
(there will be NE copies of this line if ET = 6)

Sections H thru N are repeated for each subpart.

Sections C thru N are repeated for each part.
2.5 SHIP CAD FILES

NAVSEA and its contractors have made extensive use of three-dimensional ship
drawings. Engineers have their personal preferences when it comes to CAD soft-
ware, and therefore the IGES file format is extremely important in the exchange of
databases between platforms and programs. AutoCAD binary files for the ships listed
in Table 2 were provided to NPS by NAVSEA. The files were imported to AutoCAD
residing on NPS platforms, and then translated to IGES using the IGESOUT com-
mand. Next, the output file is read into ACAD, and an ACAD binary file written for
future structure modification. Also, an ACAD facet file can be generated for trans-
lation to PATCH input format.

Three-dimensional ship drawings generated by AutoCAD are shown in Figures 5
through 7 for a DDG-51, LHA, and LHD, respectively. Figure 8 illustrates the level
of detail that is typical of the ship databases. When performing EM computations
at HF this level of detail is not required; only structures on the order of 0.1\ need to
be represented. (At the high end of the HF band the frequency is 30 MHz and the
wavelength 10 meters.) Furthermore, meshing the surfaces of small structures intro-
duces a large additional number of edges (i.e., unknowns) that do not improve the
quality of the solution, but dramatically increases the computer run time. Therefore,
it is necessary to filter the geometry model to remove unnecessary detail. This step
can be done either in AutoCAD (before the IGES file is written), or after the model
has been imported to ACAD.

3.0 PATCH
3.1 PATCH GENERAL DESCRIPTION

PATCH [1] is a FORTRAN computer code that computes electromagnetic scat-
tering and radiation based on a method of moments (MM) solution of the E-field
integral equation (EFIE). The method of moments reduces the EFIE to a set of lin-

ear equations that can be solved using standard matrix methods. The number of
unknowns, and hence the size of the matrix equation that must be solved, depends

15

Figure 5: AutoCAD generated model of a DDG-51 (without weapons systems and
antennas).

16

Figure 6: AutoCAD generated model of a LHA.

17

Figure 7: AutoCAD generated model of a LHD (no hull file was available).

18

Figure 8: AutoCAD generated model of a LHA forward mast platform.

19

Table 2: Ship 3D CAD Files

Imported | Meshed
Ship |in ACAD |in ACAD
DDG51 X
LHA X
LHD* X
DD963 X X

* No hull file

on the number of triangular patches that are used to represent the scattering body.

The method of moments is rigorous; that is, in the limit as the triangles become
smaller, the method of moments solution converges to the correct value. Unlike a
wire simulation (wire grid model), the area between edges which form the triangle
facets are solid material, not air gaps. Therefore, current truely flows on the surface
of the object, not just along the edges of the triangles.

For an object with N edges, PATCH computes a vector of complex coefficients
I,, m=1,2,..., N, such that the current crossing edge m is

S I

The unit vector 7., is in a direction normal to edge m and lies on the surface. Once
the current coefficients have been determined using the method of moments proce-
dure, it is possible to compute radiation patterns and scattered fields. A summary of

the capabilities of PATCH is given in Table 3. The details of modeling the deckedge

antennas are discussed in [8].

The application of MM is usually limited by the size of the computer available.
Bodies comprised of large numbers of triangles yield matrices too large for the com-

20

Table 3: Summary of PATCH Capabilities

Arbitrary Shape Excitation
Open/Closed objects Voltage sources (e.g., for antennas)
Modelled by triangular “patches” Plane waves
Variable patch density Both
Front end for graphical composition _
Arbitrary edge multiplicity Calculated Quantities
Non-orientable surfaces (e.g., Moebius strip) OK Surface currents
Symmetry planes may be included Far field patterns
Multiple bodies okay Radar cross sections
Field calculations at general observation
Surface ' points (including near field points)
Basis functions yield surface currents
Type: Wilton-Rau Frequency Domain
Free of line and point charges Pattern loops
Equivalent Thevenin circuits can be calculated Frequency loops

Lumped and surface impedance loading possible

puter, or run times too long to be of practical use. A general rule of thumb for
convergence of the far field is that triangle edge lengths should not exceed 0.1,
where) is the wavelength. The number of edges is generally a close estimate of the
number of unknowns that must be determined. Differences are due to the fact that
some edges may be shared by more than two facets, and therefore the number of
current coeflicients associated with that edge is more than two. (This is referred to
in the PATCH manual as the multiplicity of the edge.) A SGI Indigo II workstation
with 128 MBytes of memory can handle structures with approximately 6000 edges.

3.2 PATCH INPUT FILE FORMAT

The PATCH input file is an ASCII file that contains all of the geometry informa-
tion and calculation parameters. The file can be generated using the preprocessing
code BUILDNS which is distributed along with PATCH. BUILDN?5 is capable of gen-
erating basic geometrical shapes and combining them to yield more complex shapes.
In addition to geometry information, BUILDNJ also prompts the user for calculation
information such as frequency, observation angles, and excitation conditions.

The user input data is appended to the geometry file and written in a format
that is recognizable to PATCH. Upon execution, the NPS version of PATCH (which
has been modified from the original) looks for a file named “inpatch” in the current
directory. It performs the required calculations and generates an ASCII output file

21

named “outpatch” which contains all of the input data in readable form. An output
file of current coeflicients is also generated.

It is not necessary that BUILDN5 be used to generate the input file. If the user
is familiar with the required file format, “inpatch” can be generated using any text
editor. The input data format follows:5

Line A: TITLE
TITLE = 80 character ASCII string.

Line B: NNODES,NEDGES
NNODES = Number of nodes in file.
NEDGES = Number of edges in file,

Line C: NODE, X(NODE), Y(NODE), Z(NODE)
NODE = Node index.
X = X coordinate of node number NODE.
Y = Y coordinate of node number NODE.
Z = 7 coordinate of node number NODE.
(there will be NNODES copies of this line)

Line D: NEDGE, NODE1(NEDGE), NODE2(NEDGE)
NEDGE = Edge number.
NODE1 = Node number of first end.
NODE2 = Node number of second end.

(.there will be NEDGES copies of this line; the order of endpoints is not
important)

Line E: IGNDP(1), IGNDP(2), IGNDP(3)

S5This input sequence is typical for the calculation of antenna patterns or received signals due to
plane wave incidence. It does not necessarily cover all possible input sequences. See reference 1 for
a complete discussion of the input format.

22

IGNDP = Symmetry planes at x =0,y =0 or z = 0?
0 = no ground plane; 1= infinite PMC; -1 = infinite PEC
Line F: NEXCIT
NEXCIT = Number of voltage excitations.

Line G: ITYPE
ITYPE = Type of excitation.

p = plane wave; v= voltage; b = both
(there are NEXCIT copies of this line)

Line H: If ITYPE = p: THETA, PHI, ETRE, ETIM, EPRE, EPIM
THETA, PHI = (6, ¢) angle of incidence in polar coordinates.
ETRE,ETIM = Real(E;), Imag(Ey).

EPRE,EPIM = Real(Ey), Imag(E,).

Line I: IMAG(1), IMAG(2), IMAG(3)

IMAG = Image the plane wave about x =0,y = 0, or z = 07?
0 = no image; 1= image for PMC; -1 = image for PEC
Line H: If ITYPE # p: NVOLT

NVOLT = Number of voltage sources.

Line I: IEDGV, IPOS, VREAL, VIMAG
IEDGEV = Edge number for face on which the voltage source resides.
IPOS = Node opposite IEDGEV for positive voltage sense.
VREAL = Real part of impressed voltage.
VIMAG = Imaginary part of impressed voltage.
(there will be NVOLT copies of this line)

Line J: NFZS

23

NFZS = Number of faces with nonzero surface impedance.

Line K: IFZS, ZSRE, ZSIM
IFZS = Face number.
ZSRE = Real part of surface impedance.

ZSIM = Imaginary part of surface impedance.
(there will be NFZS copies of this line)

Line L: THEV, MTHEV, IETHEV
THEV = Thevinin equivalent circuit?

If THEV = false. then MTHEV = 0 and IETHEV = 0
If THEV = .true. then MTHEV = basis function index
If THEV = .true. then IETHEV = edge index

Line M: IPATT
IPATT = 0, no pattern calculation.
IPATT = 1, pattern calculation with 3-point integration.

IPATT = 2, pattern calculation with 1-point integration.

Line N: If IPATT # 0: TH1, TH2, NTH, PH1, PH2, NPH
TH1, TH2 = 0 pattern limits
PH1, PH2 = ¢ pattern limits
NTH, NPH = number of pattern points in and ¢

Line O: NNFLD
IPATT = Number of field observation points.

Line P: If NNFLD # 0: DX, DY, DZ

DX, DY, DZ = Finite difference increments in z,y, .
Line Q: NNFLD # 0: RFLD(1,J), RFLD(2,J), RFLD(3,J)

24

RFLD(1-3,J) = z,y, z coordinates of field point j
(there will be NNFLD copies of this line)

Line R: PRINTC

IPATT = .true., print a current table.

Line S: NEDGO

NEDGO = number of edges in current table.

Line T: If NEDGO # 0 NEGCUR
NEGCUR = Edges in current table.
(there will be NEDGO copies of this line)

Line U: FREQor -1
FREQ = Frequency.
(terminates when FREQ = -1)
3.3 PATCH CODE MODIFICATIONS

The PATCH source code received from Sandia Labs has been modified to provide
additional capabilities that were not available in the original version. Thus PATCH
actually refers to a collection of codes. The particular versions of interest for this
application are:

1. PATCH2V

There are no significant changes between this version and the orignal one
provided by Sandia. The major change is the addition of “facet checking”
as described below.

2. PATCHDF

This version has been modified to specifically compute the current induced
by incident plane waves at ship deckedge antenna locations. The edge
indices corresponding to the deckedge antenna locations must be provided.
The induced currents for all specified incidence angles are written to a
ASCII file for use by the programs RECAL and RMSDF. This version also
does “facet checking.”

25

Figure 9: An example of an ambiguous edge-defined surface.

3.3.1 INPUT/OUTPUT

All versions of PATCH run at NPS generate a set of MATLAB “m” files. The
files contain the computed field quantities, and can be loaded into MATLAB for plot-
ting. An ASCII file of the computed current coefficients named “currents” is also
generated. This is a duplicate of the list that would occur in “outpatch” if the user
requested a listing of the currents.

3.3.2 FACET CHECKING SUBROUTINE

PATCH defines geometrical shapes on the basis of edge connections; i.e., it searches
for three connected edges and considers the enclosed edges to define a unique facet.
Figure 9 illustrates a situation that occurs frequently in the meshing of surfaces that
PATCH misinterprets. PATCH finds four triangles (ABD, ACD, CDB, and ABC)
when in fact there are only three (ABD, ACD, and CDB). Therefore, before declar-
ing that a face has been found, the new face should be checked against all previously
defined faces to see if they have any common area.

An efficient test based on a comparison of circles inscribed inside of the two tri-
angles under consideration is illustrated in Figure 10. If the inscribed circles overlap
then the two facets share area and the larger of the two triangles is not a valid face.
This test can fail in the case of extreme aspect ratios as shown in Figure 11. However,
the “Shell Mesh” parameters can be set to avoid this situation.

26

Pll

Ly

Figure 10: A test for common area based on a comparison of inscribed circles.

Two triangles need to be tested only if:
1. they share a common edge, and
2. they lie in the same plane®.

Referring to Figure 10, the triangle nodes are P;; where the first subscript denotes the
triangle number (z = 1,2) and the second the node number (j = 1,2,3). Similarly
the edges are defined by L;;, which in vector form are

Ez'l = (Ziz — 2i1)Z + (Yo — Y1)9 + (202 — zi1)Z2
Ly = (is — Ti2)& + (Yis — yi2)9 + (z:3 — Zin)Z
Lis = (zi1 — 2i3)Z + (yar — Yi3)9 + (201 — 2i3) 2
Position vectors to the nodes are:
R(Py) = it + yis§ + 252

The perimeter of triangle ¢ is
3

Ci =3 |Ly|
J=

j=1

Unless they form the open end of a pyramid or corner. This condition will not be encountered
in general.

27

TRIANGLES OVERLAP
BUT INSCRIBED
CIRCLES DO NOT

Figure 11: An example of a case in which the test fails.

In terms of the node position vectors the area of triangle 7 is given by
Ai = |B(Pu) x B(Po) + B(Pa) x B(Pa) + E(Pis) x E(Py)|
A normal vector is the cross product of any two edges. For instance,
Ni = zil X zi2
Finally, the position vector to the center of the inscribed circle for triangle ¢ is
0: = [LulR(Pu)| + Ll B(Pa)] + LalB(Pa)]] /C:

The radius of the circle is r; = A;/C;. Two circles 7 and j overlap if the distance
between their centers is less than the sum of their radii

l65~6j| <ri+r;

Using the above equations, the following test can be applied to determine whether
or not a triangle is a valid face:

1. Loop through all pairs of triangles. For two triangles that share and edge,
2. see if they lie in the same plane (to within some tolerance).

3. If they do, find out which triangle has the smallest area (smallest inscribed
circle) and find the location of the center.

28

4. Determine if the circles overlap by finding the distance between center and
comparing it to the sum of the radii.

5. If the circles overlap the large triangle is not a valid face.

The facet checking algorithm has been incorporated into all of the PATCH related
codes that generate a face list from the edges. They include:

All versions of PATCH (new subroutine GEOM and additional subroutines AXB
and FACETCK)

PATCH-to-ACAD translator, PTA .
Input file checking program, KNIT
MATLAB plot file generating program, BLDMAT
The required changes to the PATCH codes to implement facet checking are:
new subroutine GEOM
additional subroutine AXB (vector cross product)
additional subroutine FACETCK

These codes are listed in Appendix A. Note that the argument list in GEOM is not
the same as that for the original version.

4.0 VIEWING GEOMETRY FILES

4.1 INTRODUCTION

Geometry files can be viewed using several different methods. The information
that can be displayed differs in each case. The options available are:

1. DISSPLA graphics via the program BUILDNS5 (Facet, node, and edge numbers
can all be displayed.)

2. ACAD (Only facet numbers are displayed. Edge and node numbers can be
found using the edge connection list generated by the program BLDMAT.)

3. MATLAB (Only node and edge numbers can be displayed.)

29

The procedures required to use each of the above three methods are described below.
4.2 VIEW USING BUILDN5

A PATCH input file can be viewed on the screen or printed using a postscript
file by running BUILDN5. The “disp” option is chosen after the data file has been
read. The program prompts for the quantities to be displayed (nodes, edges, or faces),
the limits of the viewing box, and viewing angle. The DISSPLA software package is
required for' this method.

4.3 VIEW USING ACAD

Geometries can be viewed directly in ACAD after they have been meshed. How-
ever, if facet numbers in “inpatch” are to be the same as those viewed in ACAD, it is
necessary to convert the PATCH input file back to the “facet” form using PATCH’s
index ordering. This is achieved using the PATCH-to-ACAD translator PTA. PTA
creates a the file “out.facet” from an input file “in.patch” in which each face de-
fined by PATCH is written as a separate part. Therefore, facet numbers assigned by
PATCH will be the same as the facet numbers viewed in ACAD using the “Verify
Entity” command.

It is not possible to find edge numbers visually in ACAD with the current trans-
lator software. Edge and node numbers can be found indirectly by noting the two
face numbers that are attached to the edge. The edge number can be determined by
finding the common edge in the connection list generated by PATCH or BLDMAT.

4.4 VIEW USING MATLAB

The geometry can be displayed using MATLAB. First the geometry file (in PATCH
format) is converted to a set of “.m” files using the FORTRAN program BLDMAT.
After BLDMAT has been executed, the MATLAB script PLTPATCH can be run.
PLTPATCH has several flags that control whether a wire grid, surface, or surface
with hidden lines is displayed. Flags can also be set to display edge and node num-
bers. The scale and view can be changed using the standard MATLAB commands.

5.0 TRANSLATORS AND COMPUTER CODES

5.1 INTRODUCTION

Throughout the course of this research several new computer codes were written
to perform data translation and manipulation. The bulk of the translator codes are

30

simply subroutines that have been extracted from PATCH, with some minor mod-
ifications. The functions and relationships between the various computer codes are
illustrated in Figure 12. (Names with a “.x” extension refer to executable files rather
than the FORTRAN source codes which carry a “.f” extension.)

Among the codes developed are the following translators:

1. ACAD to PATCH
2. PATCH to ACAD
3. PATCH to NEC

NEC (Numerical Electromagnetics Code) is a computational EM code based on wire
grid models [9].

5.2 ACAD-TO-PATCH TRANSLATOR

The ACAD-to-PATCH translator ATP converts an ACAD “.facet” file (described
in Section 2.4) to a PATCH input file (described in Section 3.2). A listing of program
ATP is given in Appendix B. The ACAD file defines the geometry using a facet table
which contains the node coordinates for each triangle. ATP defines edges for each
triangle and forms an edge connection list. It uses the same algorithm that is used
in PATCH’s subroutine GEOM. Therefore, facet checking using the inscribed circle

method is also incorporated into ATP.
5.3 PATCH-TO-ACAD TRANSLATOR

The PATCH-to-ACAD translator PTA converts a PATCH input file into ACAD’s
“facet” format. There are actually two versions of this translator: PTA and PTF.
PTA writes the entire ship as a single part. Therefore, when loaded into ACAD, the
individual triangles cannot be manipulated (i.e., deleted, moved, verified, etc.). PTF
writes an ACAD “facet” file where each facet is a part. PTF results in a much larger
file than PTA. Listings are given in Appendix C.

5.4 PATCH-TO-NEC TRANSLATOR

NEC is relatively old compared to the EM patch codes and therefore more widely
distributed. A crude translator was written so that a PATCH input format file could
be run on NEC. The translator maps each facet edge to a wire segment. This can
cause problems because circular wires are usually represented by thin strips in patch
codes. Thus the two edges of a thin strip result in two closely spaced parallel wires
that may share common space if the wire radii are large enough. This problem is

31

——] Program [g, "*" denotes an arbitrary name subject to-
name

pltpatch.m

input file output each code's character restriction.
name file name Extensions must be included as indicated.
«|
X g knitx X
in.patch
in.facet *.facet * facet
atp.x |-at ACAD |am— pta.x
— out.facet
.iges
out.patch 9 . A
1. in.patch
*.igs
AutoCad
*
. —p{ buildn5.x
Y - — - —|.
. . tek.xd(run
under
—pe-! bldmat.x j-eg— "tektool")
*.m geometry *
files inpatch
: patch2v.x
*.m pattern
_ files.
| |
MATLAB |
I | plot patterns |
I | *.m geometry
] l files
- plot gg?é%qetry | e
| i

Figure 12: Computer code functions and relationships.

32

probably not severe enough to cause NEC to abort, but will affect the computed
current on the offending edges.

5.5 FILE CHECKING USING KNIT

The program KNIT reads a PATCH format file and checks it for duplicate edges
and nodes. This can occur when ACAD creates a body of revolution. For example,
a cylinder can be created by rotating one line about a second line. This is analogous
to wrapping a sheet of paper to form a cylinder. Where the two paper edges meet,
two lines are created by ACAD. The presence of two overlapping edges can possibly
cause problems when running PATCH and should be eliminated. KNIT removes the
duplicate quantities and shifts the indices of subsequent entries in the node and edge
tables down by one.

6.0 AUTOMESHING PROCEDURE

The following steps are used to generate a triangular facet model of a structure
that has been created in AutoCAD using ACAD’s “Shell Mesh” command. In the
following discussion it is assumed that the reader has a basic knowledge of ACAD
commands.

Step 1: Create an IGES file of the database in AutoCAD using IGESOUT.

Step 2: Import the IGES file into ACAD using “Read Other Format” under
the “File” box.

Step 3: After successfully reading the IGES file, save the data using the binary
option under the “File” menu. The file name should have a “.a9” extension.
This file will serve as a backup in the event that ACAD crashes during one of
the subsequent steps.

Step 4: Modify the file to suit the current problem objectives. This may in-
volve discarding entities that contain too much detail. Examples are window
frames, stairways, and internal deckhouse structures such as shelves. Overlap-
ping surfaces must also be eliminated.

Step 5: Once the ship surface has been uniquely defined by non-overlapping
surfaces, create faces on all surfaces. The “Include Surface Boundaries” option
should be used.

Step 6: Create a “Sheet Assembly” from the faces in Step 5. It is recommended
that a large minimum edge length be used on the first attempt to create the

33

assembly. Also, “Cluster” and “Deviation” parameter values of 50% are recom-
mended. Note that the “Facegap” parameter will impact the final continuity of
the surface; i.e., whether adjacent faces share a common edge or a gap exists
between them. The continuity of the surface can be checked using the “Verify
Laminar Edges” option.

* Step 7: Once the shell mesh has been generated and the solid volume defined,
turn off (blank) all entities except the volume. Save the volume in a facet”
file.

Step 8: Copy the “.facet” file from Step 7 to a file named “in.facet.” Run
the ACAD-to-PATCH translator, ATP. A PATCH format file is written to
“out.patch.”

Step 9: The program KNIT can be run to check the file “out.patch” for dupli-
cate nodes and edges.

Step 10: Add the calculation paraméters to the geometry file. This can be done
using a text editor (if the user is familiar with the PATCH input file format),
or by running BUILDNS. '

Step 11: Copy the file obtained in Step 10 to one named “inpatch” and execute
the desired version of PATCH.

Here are several useful hints that should save time reduce errors:

1. The body surfaces (usually of type “Ruled” or “Net”) should be displayed
as curved mesh using U and V grid parameters of 2. This allows the surfaces to
be viewed and their integrity verified without undue cluttering. Before creating
the faces in Step 5, the U and V grid parameters can be changed to 1. Note
that in many cases the “Fit Tol” parameter can be important.

2. Individual surfaces can be verified using the “Verify” command with the
“Amb” toggle switched on. Triangles that have only two flashing edges must be
deleted and recreated, or the endpoints flipped on one of the edges. (Caution:
this affects the integrity of any facet attached to the edge being flipped.)

3. The shell meshing (Step 6) should be performed on moderately sized sub-
sections of a large complex target, rather than attempting to mesh the entire
structure.

Figures 13 and 14 show a DD963 that has been meshed in ACAD using the above
procedure. Remeshing the surface to obtain a larger or smaller grid is the relatively

34

Figure 13: DD963 ship model generated using the method described in Section 6.

35

Figure 14: DD963 ship model remeshed with a small grid size.

36

simple part of the procedure (which starts at Step 6).

REFERENCES

[1] W. Johnson, et al., “Patch Code Users’ Manual,” Sandia Report SAND87-2991,
May 1988.

[2] J. Putnam, et al., CARLOS-3D Three-Dimensional Method of Moments Code,
McDonnell Douglas Aerospace — East, December 1992.

[3] S. Lee, et al., “Numerical Modeling of RCS and Antenna Problems,” Lincoln
Labs Technical Report 785, December 1987.

[4] The ACAD User’s Manual, Lockheed Martin Corp., Ft. Worth, April 1995.

[5] ACAD Reference Set — Volume 1, Lockheed Martin Corp., Ft. Worth, April
1995.

(6] AutoCAD Reference Manual, Publication 100190-01, Autodesk Inc., May 1992.

[7] The Initial Graphics Exchange Specification (IGES) Version 5.1, U.S. National
Computer Graphics Association.

(8] D. Jenn, “Near-Field Need-to-Calibrate Indicator of Shipboard HFDF Sys-
tems,” Naval Postgraduate School, research report to be published, September
1996. -

[9] G. Burke, Numerical Electromagnetics Code - NECY, Method of Moments, Part
I: User’s Manual, Lawrence Livermore Laboratory, UCRL-MA-109338, January
1992.

37

APPENDIX A: FACET CHECKING CODE

The following subroutines perform the facet checking algorithm described in Sec-
tion 3.3.2

c e e e e i i e e e e e o

subroutine geom(datnod,nconn,nedges,itrak,nbound,mxface,

$ nfaces,mxbdnd,nunknb)
MODIFIED TO DO FACET CEECKING -- NOTE ARRAY datnod IS REQUIRED
this subroutine £ills nbound with the faces formed by the edges in
nconn. it also fills in the multiplicity factor of the edge in
nconn(3,edge). it returns the number of faces(nfaces), and the number
of body unknowns(nunknb) which is equal to the summation of the
multiplicity factors of the edges before symmetry planes are comsidered.
itrak is a work array.

integer nconn(3,nedges),nbound(3,mxface),itrak(nedges),np(6)

dimension datnod(3,mxbdnd)

nfaces=0
¢ find faces and list them in nbound.

do 100 iedge=1,nedges-2
ntrak=0
c look for all edges that attach to edge iedge and put them in itrak.
do 200 jedge=iedge+1i,nedges
do 20 i=1,2
do 21 j=1,2
if(nconn(i,iedge).eq.nconn(j,jedge))then
¢ we have found an edge.
ntrak=ntrak+1
itrak(ntrak)=jedge

O 0 0 0 0 0 0

goto 200
endif
21 continue
20 continue
200 continue

¢ find all pairs of edges that form a face with iedge.
do 300 jedge=1,ntrak-1
do 301 kedge=jedge+i,ntrak
do 30 j=1,2
do 31 k=1,2
¢ if the 2 faces in itrak have a common point and
¢ the common point is not in common with the iedge...
if((nconn(j,itrak(jedge)).eq.nconn(k,itrak(kedge))).and.
$(nconn(j,itrak(jedge)).ne.nconn(1,iedge) .and.nconn(j,itrak(jedge))
$.ne.nconn(2,iedge)))then
if(nfaces.eq.0) then
c if this is the first face save it
nfaces=nfaces+1

38

¢ put the face into nbound.
nbound (1,nfaces)=iedge
nbound (2,nfaces)=itrak(jedge)
nbound(3,nfaces)=itrak(kedge)
¢ increment the multiplicity factor of the edges.
nconn(3,iedge)=nconn(3,iedge)+1
nconn(3,itrak(jedge))=nconn(3,itrak(jedge))+1
nconn(3,itrak(kedge))=nconn(3,itrak(kedge))+1
go to 311
endif
Coeskadek kA koo ook ARk ko ok ks dedsk ook kA sk ok sk ok sk sk ok
¢ if this is not the first face, check to see if it overlaps with any
¢ previously found face.
ki=iedge
k2=itrak(jedge)
k3=itrak(kedge)
np(1)=nconn(i,k1)
np(2)=nconn(2,k1)
np(3)=nconn(1,k2)
np(4)=nconn(2,k2)
np(5)=nconn(1,k3)
np(6)=nconn(2,k3)
¢ find the three unique points
nodei=np(1)
node2=np(2)
do 603 1i=3,6
npt=np(ii)
if((npt.ne.np(1)).and. (npt.ne.np(2))) then
¢ must be the third node

node3=npt
go to 602
endif

603 continue

602 continue

c node coordinates of the first face
x1i=datnod(1,nodel)
yli=datnod(2,nodel)
z11=datnod(3,nodel)
x12=datnod(1,node2)
yi2=datnod(2,node2)
z12=datnod(3,node2)
x13=datnod(1,node3)
y13=datnod(2,node3)
z13=datnod(3,node3)
isum=0

do 39 kface=1,nfaces
¢ nodes of the face number kface to check against
il=nbound(1,kface)
np(1)=nconn(1,il1)

39

np(2)=ncomn(2,i1)
i2=nbound(2,kface)
np(3)=nconn(1,i2)
np(4)=nconn(2,i2)
i3=nbound(3,kface)
np(5)=nconn(1,i3)
np(6)=nconn(2,i3)
¢ find the three unique points
nodel=np(1)
node2=np(2)
do 613 ii=3,6
npt=np(ii)
if((npt.ne.np(1)).and. (npt.ne.np(2))) then
¢ must be the third node

node3=npt
go to 612
endif
613 continue
612 continue

¢ node coordinates of the second face
x21=datnod(1,nodel)
y21=datnod(2,nodel)
z21=datnod(3,nodel)
x22=datnod(1,node2)
y22=datnod(2,node2)
z22=datnod(3,node2)
x23=datnod(1,node3)
y23=datnod(2,node3)
z23=datnod(3,node3)
c see if the triangles overlap
call facetck(x11,y11,z11,x12,y12,212,x13,y13,
& =z13,x21,y21,221,x22,y22,222,x%23,y23,223,iflag)
isum=isum+iflag
c if iflag.eq.0 there is no overlap so continue checking
if(iflag.eq.0) go to 38
c if iflag.eq.1 do not include the face being tested; no need to
c check any more faces since this face is being discarded
if(iflag.eq.1) go to 311
c if iflag.eq.2 keep the face being tested and discard face number kface.
if(iflag.eq.2) then
¢ reduce the multiplicity factor of the discarded face edges by one
¢ face number kface has edges i1,i2,i3
nconn(3,il)=nconn(3,i1)~1
nconn(3,i2)=nconn(3,i2)-1
nconn(3,i3)=nconn(3,i3)~-1
nbound(1,kface)=iedge
nbound(2,kface)=itrak(jedge)
nbound (3,kface)=itrak(kedge)
c increase the multiplicity factor of the new face edges by one.

40

nconn(3,k1)=nconn(3,k1)+1

nconn(3,k2)=nconn(3,k2)+1

nconn(3,k3)=nconn(3,k3)+1
¢ no need to check the remaining faces.

go to 311
endif
38 continue
39 continue

¢ made it all the way through -- add this edge
nfaces=nfaces+i

¢ put the face into nbound.
nbound(1,nfaces)=iedge
nbound(2,nfaces)=itrak(jedge)
nbound(3,nfaces)=itrak(kedge)

¢ increment the multiplicity factor of the edges.
nconn(3,iedge)=nconn(3,iedge)+1
nconn(3,itrak(jedge))=nconn(3,itrak(jedge))+1
nconn(3,itrak(kedge))=nconn(3,itrak(kedge))+1

C k%R Kk %k Ak Ak ok dk ok ok k ok ok ¥ ek 3 o e o 3 ok ok o e 3 ok ok ¥ %k ¥ 3k e 2k ok 2k 3 2k e ke ke
goto 311
endif
31 continue
30 continue
301 continue
311 continue
300 continue

100 continue
c at first nunknb=-nedges. this would be incremented by 3 for each
¢ face that was found. therefore nunknb=-nedges+3+*nfaces.
nunknb=3*nfaces—nedges

return
end
c== EEEEEEEm oo oo e e e e e e e
subroutine facetck(xii,yll,211,x12,y12,z12,x13,y13,213,
& x21,y21,221,x%22,y22,222,x23,y23,223,iflag)
c

¢ check to see if two faces overlap based on the common
¢ surface area of circles inscribed in the two triangles
iflag=0
¢ only test with triangles that lie in the same plane
¢ the condition is that the mags of the components of the
¢ cross product of the normals must be < eps
eps=1.e-2
¢ notation: first number in a variable refers to face
second number refers to node or edge
¢ x,y,2 components of the three edge vectors of triamngle 1
eglix=x12-x11
egliy=yi2-yi1
egliz=z12-z11

41

egl2x=x13-x12
egl2y=y13-y12
egl2z=z13-212
eg13x=x11-x13
egl3y=y11-y13
egi3z=z11-z13
¢ edge lengths for face 1
eglim=sqrt (eglix**2+eglly**2+egliz+*2)
egl2m=sqrt (egl2x**2+egl2y**2+eg12z**2)
egli3m=sqrt (egl3x**+2+egl3y**2+eg13z**2)
¢ x,y,z components of the three edge vectors of triangle 2
eg21x=x22-x21
eg2ly=y22-y21
eg21z=222-221
eg2x=x23~x22
eg22y=y23-y22
eg22z=223-222
eg23x=x21-x23
eg23y=y21-y23
eg23z=2z21-223
¢ edge lengths for face 2
eg2im=sqrt (eg2lx**2+eg2ly**2+eg21z**2)
eg22m=sqrt (eg22x**2+eg22y**2+eg22z+*2)
eg23m=sqrt (eg23x*+2+eg23y**2+eg23z+*2)
¢ unit vectors normal to each face
call AxB(eglix,egily,egliz,egi3x,egl3y,egl3z,vnix,vniy,vniz)
vmagl=sqrt (vnlx**2+vniy**2+vniz**+2)
vnix=vnix/vmagl
vniy=vnly/vmagl
vniz=vniz/vmagl
call AxB(eg2ix,eg2ly,eg21z,eg23x,eg23y, eg23z,vn2x,vnly,vn2z)
vmag2=sqrt (vn2x**2+vn2y**2+vn2z+*2)
vn2x=vn2x/vmag2
vn2y=vn2y/vmag2
vn2z=vn2z/vmag2
call AxB(vnix,vnly,vniz,vn2x,vn2y,vn2z,vnx,vny,vnz)
¢ if |vnx| and |vnyl and |vnz| are sufficiently small then these two
c faces can be considered coincident
if ((abs(vnx).1lt.eps).and. (abs(vny).1lt.eps).and. (abs(vnz).1t.
& eps)) then
¢ areas of the two triamngles
call AxB(x11,y11,211,x12,y12,212,a1,b1,c1)
call AxB(x12,y12,z12,x13,y13,213,a2,b2,c2)
call AxB(x13,y13,z13,x11,y11,z11,a3,b3,c3)
areal=sqrt((al+a2+a3)**2+(b1+b2+b3)**2+ (cl+c2+c3)*%2) /2.
call AxB(x21,y21,221,x22,y22,222,al,b1,c1)
call AxB(x22,y22,z222,x23,y23,223,a2,b2,c2)
call AxB(x23,y23,223,x21,y21,221,a3,b3,c3)
area2=sqrt((ail+a2+a3)**2+(b1+b2+b3)**2+(cl+c2+c3)**2) /2.

42

¢ compute perimeters
perimi=eglim+egi2m+egi3m
perim2=eg2imteg22m+eg23m
c find position vectors to the centers of each inscribed circle
cix=(egl2m*x11i+egl3m*x12+eglim*x13)/periml
cly=(egi2m*yli+egi3m+y12+eglim*y13) /perimi
clz=(egl2m*z1i+egl3m+z12+egl im*z13) /perimi
c2x=(eg22m*x21+eg23m*x22+eg21m*x23) /perim2
c2y=(eg22m*y21+eg23m*y22+eg21m+y23) /perim2
c2z=(eg22m*z21+eg23m*222+eg21m*z23) /perim2
¢ distance between centers o
d12=sqrt((cix—-c2x)**2+(cly-c2y)**2+(clz-c2z) **2)
¢ radii of circles are areas/perimeters
radi=areal/perimi
rad2=area2/perim2
¢ if d12 < radi+rad2 then there is overlap
if(d12.1t. (rad1+rad2)) then
iflag=1
if(rad2.gt.rad1) iflag=2
endif
endif
return
end

c====== _———

subroutine AxB(ai,a2,a3,b1,b2,b3,c1,c2,c3)

c Em s Emsmmems——— e — e — e — e e

¢ cross product of two vectors
cl=a2*b3-a3*b2
c2=a3*bl-al*b3
c3=al*b2-a2%bl
return
end

APPENDIX B: ACAD-TO-PATCH TRANSLATOR CODE

The ACAD-to-PATCH translator code ATP is described in Section 5.1. It con-
verts an ACAD “.facet” file to a PATCH input file.

c program atp.f (version 3 -- allows subparts & uses face checking)

c

¢ "acad to patch" translator ENHANCED VERSION

c

¢ this program reads a file named "in.facet" then reformats the data
¢ and writes it to the file named "out.patch" which can be read into
¢ "buildn5.f" as a geometry file. characteristics of ACAD facet file:
¢ >> a vertex table is given for each part (e.g., each face of a cube
c is considered a part)

¢ >> each part is assigned a name

¢ >> node index is reinitialized for each part and nodes common to

c several parts are present more than once (run "knit.f" on

c "out.patch" to eliminate duplicate edges)

¢ >> a vertex comnection list is given for each part (face index and
c its three vertex indices)

¢ >> material parameters are included

¢ >> multiple parts allowed, and each part can have several subparts
Cc

¢ x,y7,2 are node coordinates (index is facet number)

¢ datnod and nconn are same as in patch.f

dimension node(3,6000),nbound(3,6000),nv(6000),part(6000)
dimension datnod(3,6000),nconn(3,6000),istart(200)
dimension tmpdat(3,6000),icount(6000),indsum(6000)
dimension ivmin(6000),ivtx(6000,500),iskip(6000),indx(6000)
integer tmpnod(3,6000)
character*80 title
character*20 part,subpt

c distances less than eps are considered the same
eps=0.

¢ iverb=0 is verbose mode -- progress displayed

iverb=0

open(1,file=’in.facet’,status=’o0ld’)

xmin=1.e6

ymin=1.e6

zmin=1.e6

xmax=-1.e6

ymax=-1.e6

zmax=-1.e6

format (a80)

2 format (a20)
read(1,1) title
write(6,*) ’title:’,title
read(1,*) nparts

[y

44

¢ keep track of total number of faces and vertices
nvtl=0
nftl=0
do 1000 npart=1,nparts
read(1,2) part(npart)
read(1,*) nmir
if (nmir.ne.0) write(6,*) ’error: structure is mirrored’
read(1,*) nv(npart)
nverts=nv(npart)
if(iverb.eq.0) then
write(6,*) ’part number: ’,npart

write(6,*) name: ’,part(npart)
write(6,*) vertices: ’,nv(npart)
endif

c read node table for this subpart
do 10 n=1,nverts
read(1,*) xx,yy,zz
nn=nvtl+n
tmpdat(1,nn)=xx
tmpdat (2,nn)=yy
tmpdat(3,nn)=zz
datnod(1,nn)=tmpdat(1,nn)
datnod(2,nn)=tmpdat(2,nn)
datnod(3,nn)=tmpdat(3,nn)
xmax=amax1(xmax,xx)
ymax=amax1(ymax,yy)
zmax=amax1(zmax,zz)
xmin=amini (xmin,xx)
ymin=amini(ymin,yy)
zmin=amini(zmin,zz)
10 continue
¢ loop through subparts
read(1,*) nspts
if(iverb.eq.0) write(6,*)
& ’number of subparts in current part: ’,nspts
do 15 kn=1,nspts
read(1,2) subpt
if(iverb.eq.0) then
write(6,*) ’‘subpart number: ’,kn
write(6,*) ° name: ’,subpt
endif .
c read: el type, no. faces, no. vertices, em2, vp,vn,ec
¢ restrictions: em2=0 (one-sided properties)

c vp=0 (vertex parameters)
c vn=0 (no normals present)
c ec=0 (no curvature lines)

read(1,*) nsides,nfaces,nsv,nem2,nvp,nvn,nec
display if there are problems:
if(nsides.ne.3)

Q

& write(6,*) ’nontriangular facet emcountered’
if(nsv.ne.0) write(6,*) ’problem: nsv is not zero’
if(nem2.ne.0) write(6,*) ’problem: EM2 is not zero’
if(nvp.ne.0) write(6,*) ’problem: VP is not zero’
if(nvn.ne.0) write(6,*) ’problem: VN is not zero’
if(nec.ne.0) write(6,*) ’problem: EC is not zero’

¢ if this is a part nodes=nverts; if this is a subpart nodes=nsv
do 20 n=1,nfaces
nn=n+nftl

c read vertex connection list
read(1,*) ndel,nde2,nde3,ndum
tmpnod(1,nn)=ndei+nvtl
tmpnod(2,nn)=nde2+nvtl
tmpnod (3,nn)=nde3+nvtl
node(1,nn)=tmpnod(1,nn)
node(2,nn)=tmpnod(2,nn)
node(3,nn)=tmpnod(3,nn)

20 continue
nftl=nftl+nfaces
15 continue

nvtl=nvtl+nv(npart)
1000 continue
nverts=nvtl
nfaces=nftl
write(6,*) ’total number of vertices,faces read=’,nverts,nfaces
¢ find duplicate vertices and save their indices in array iold.
c icount(i) counts the number of times vertex i occurs
do 75 ivi=1,nverts
xi=tmpdat(1,ivl)
yi=tmpdat(2,ivi1)
z1=tmpdat(3,ivil)
icount(ivi)=1
¢ keep track of vertex number ivl and its duplicates
¢ ivtx(node number, occurace number, duplicate index)
ivtx(ivl,icount(ivl))=ivi
do 73 iv2=1,nverts
if(ivi.ne.iv2) then
x2=tmpdat (1,iv2)
y2=tmpdat(2,iv2)
z2=tmpdat (3,iv2)
dx=abs(x1-x2)
dy=abs(y1-y2)
dz=abs(z1-z2)
if((dx.1t.eps).and.(dy.1t.eps).and.(dz.1lt.eps)) then
icount(ivi)=icount(iv1)+1
ivtx(ivl,icount(ivi))=iv2
endif
endif
73 continue

46

75 continue
¢ for each vertex find the smallest index
do 78 iv=1,nverts
ivmin(iv)=nverts+i
do 78 ii=1,icount(iv)
ivmin(iv)=min(ivmin(iv),ivtx(iv,ii))

78 continue
¢ find duplicate vertices
irem=0

do 76 ii=1,nverts
¢ if minimum index is .1t. ii this is a duplicate
if(ivmin(ii).1t.ii) then
irem=irem+1
iskip(irem)=ii
endif
76 continue
¢ order the indices to be removed from lowest to highest
idx=nverts
do 85 iil=1,irem
do 83 i2=1,irem-iil+1
indx(i1)=min(idx,iskip(i2))

83 continue
idx=indx(i1)+1
85 continue

if(iverb.eq.0) then
do 190 ix=1,irem
190 write(6,*) ’remove #:’,ix,iskip(ix),indx(ix)
endif
¢ set all node indices to minimum value
do 95 nn=1,nfaces
do 95 is=1,3
iv=tmpnod(is,nn)
node(is,nn)=ivmin(iv)

95 continue
do 96 nn=1,nfaces
do 96 is=1,3
tmpnod(is,nn)=node(is,nn)
96 continue

¢ remove duplicate nodes and shift remaining nodes down one for
¢ each previous node removed
do 79 ir=1,irem
do 79 iv=indx(ir),nverts-ir
datnod(1,iv)=datnod(1,iv+1)
datnod(2,iv)=datnod(2,iv+1)
datnod(3,iv)=datnod(3,iv+1)
79 continue
nverts=nverts-irem
¢ check each node of each face to see how many previous nodes
c have been removed (to determine the number of steps to decrement

47

¢ the index)
do 90 nn=1,nfaces
do 90 is=1,3
idx=tmpnod(is,nn)
c count vertices .1lt. idx that have been removed
¢ nodes greater than iskip(ir) drop one; those less than iskip(ir) stay

iter=0
do 93 ir=1,irem
c if(idx.eq.indx(ir)) go to 90

do 93 ii=1,idx
if(ii.eq.indx(ir)) iter=iter+i

93 continue
node(is,nn)=tmpnod(is,nn)-iter
90 continue

write(6,*) ’final number of vertices, faces=’,nverts,nfaces
¢ rescale data if desired

c write(6,*) ’rescale data? (O=yes/1=no)’
c read(5,*) ans
ans=1

if(ans.eq.0) then
write(6,*) ’xmax,xmin=’,xmax,xmin
write(6,*) ’ymax,ymin=’,ymax,ymin
write(6,*) ’zmax,zmin=’,zmax,zmin
write(6,*) ’enter scale factor’
read(5,*) fac
do 50 n=1,nverts
datnod(1i,n)=fac*datnod(1i,n)
datnod(2,n)=fac*datnod(2,n)
datnod(3,n)=fac*datnod(3,n)
50 continue
endif
¢ generate edge connection list using "brute force" checking
if(iverb.eq.0) A
& write(6,*) ’start to generate edge connection list’
¢ for face n check pairs of vertices to see if they have been assigned
c an edge number. exception is n=1.
nconn(1,1)=node(1,1)
nconn(2,1)=node(2,1)
nconn(1,2)=node(2,1)
nconn(2,2)=node(3,1)
nconn(1,3)=node(1,1)
nconn{2,3)=node(3,1)
nedges=3
ncount=3
do 60 n=2,nfaces
c check all edges to see if the three edges of the current face n
c have already been assigned an index
do 59 ns=1,3
if(ns.eq.1) then

48

npi=node(1,n)
np2=node(2,n)

elseif(ns.eq.2) then
npi=node(2,n)
np2=node(3,n)

else
npi=node(3,n)
np2=node(1,n)

endif
if(iverb.eq.0) then
write(6,*) ’checking edge ’,ns,’ of face ’,n
endif

do 65 ne=1,nedges

¢ check edge ns of triangle n against edge ne

mpi=nconn(1,ne)
mp2=nconn(2,ne)
if(((mpl.eq.npl).and. (mp2.eq.np2)).or.

& ((mp2.eq.np1).and. (mpl.eq.np2))) then
c edge is a duplicate and therefore no need to go further
go to 66
endif
65 continue

c made it all the way through -- must be new edge
if(iverb.eq.0) then
write(6,*) ’new edge ’,npl,np2
write(6,*) ’number of edges that have been defined is ’,ncount
endif
ncount=ncount+1
nconn(1,ncount)=npi
nconn(2,ncount)=np2
nedges=ncount

66 continue
59 continue
60 continue

do 70 n=1,nedges
70 nconn(3,n)=-1
if(iverb.eq.0) write(6,*) ’edge comnection list generated’
c write reformated data to file "out.patch"
open(2,file=’out.patch’)
write(2,*) title
write(2,*) nverts,nedges
do 151 n=1,nverts
151 write(2,*) n,datnod(1,n),datnod(2,n),datnod(3,n)
do 200 n=1,nedges
200 write(2,%*) n,nconn(1i,n),nconn(2,n)
¢ write new data in MATLAB files
open(12,file=’xpts.m’)
open(13,file=’ypts.m’)
open(14,file=’zpts.m’)

open(15,file=’endl.m’)
open(16,file=’end2.m’)
o8 format (i5)
do 140 n=1,nverts
write(12,100) datnod(i,n)
write(13,100) datnod(2,n)
write(14,100) datnod(3,n)
140 continue
100 format(f15.4)
do 150 n=1,nedges
write(15,101) nconn(i,n)
write(16,101) nconn(2,n)
150 continue
101 format(i5)
call geom(datnod,nconn,nedges,indsum,nbound,mxface,nfaces,
$ mxbdnd,nunknb)
istart(1)=1
istart(2)=nfaces+1
call prntbnd(nconn,nbound,istart,1,nedges,nfaces,1)
¢ get body parameters
call bodpar(datnod,nconn,nbound,nverts,nedges,nfaces,nnnknb)
998 continue
stop
end
c===== o=
subroutine prntbnd(nconn,nbound,istart,i,nedges,nfaces,nbodys)

this subroutine prints the edges and the vertices of each face.
input:
nconn has the vertices and the multiplicity factor for each edge.
nbound has the edges for each face.
istart has the beginning faces for each body.
i is the present body.
nedges is the total number of edges.
nfaces is the total number of faces.
nbodys is the total number of bodys.
integer nconn(3,6000),nbound(3,6000),istart (200)
integer nverts(6000,3)
open(3,file=’facelist’)
open(9,file=’facedat’)
open(20,file=’nodel.m’)
open(21,file=’node2.m’)
open(22,file=’node3.m’)
¢ loop through the faces of this body.
do 10 i1O=istart(i),istart(i+1)-1
call facvtx(nconn,nedges,nbound(1,i10),nbound(2,i10),
>nbound(3,i10) ,nvi,nv2,nv3)
write(3,98)1i10,nbound(1,i10),nbound(2,i10),nbound(3,i10),nvi,nv2
>,nv3 '

0O 00 0 0 000060

50

¢ write face number and vertices to ‘‘facedat’’
write(9,*)i10,nv1,nv2,nv3
write(20,100) nvi
write(21,100) nv2
write(22,100) nv3
nverts(il10,1)=nvil
nverts(i10,2)=nv2
nverts(il0,3)=nv3
10 continue
98 format(ix,’face’,i5,’ has edges’,3ib,’ with vertices’,3i5)

1

O 000 0000000000000 00O0000O0

a0

00 format(i6)

return

end

subroutine bodpar(datnod,nconn,nbound,nnodes,nedges,nfaces,nunknb)

this subroutine computes the body parameters

input:

datnod(i,j) i=1,2,3 are the X,¥,Zz coordinates of the jth node.
nconn(3,j): edge j runs from node nconn(1,j) to node nconn(2,j)
nconn(3,j) is the multiplicity of the jth edge.

nbound(i,j):
nnodes = the
nedges = the
nfaces = the
nunknb = the
output:
avedge = the
edgemx = the
mxedge = the
edgemn = the
mnedge = the
tarea =

contains the ith edge of the jth face i=1,2,3.
number of body nodes.

number of edges.

number of faces.

number of body unknowns.

average edge length(meters**2) including multiplicity.
maximum edge length(meters).

edge number of the edge with length edgemx.

minimum edge length(meters). »

edge number of the edge with length edgemn.

the surface area of the scatter(meters**2):for thin

avarea = the
mxarea = the
mnarea = the
ratio = the
mnrtio = the

dimension

structures only one side is considered in the surface area.

average area of the faces.

number of the face with the maximum area(areamx).
number of the face with the minimum area(areamn).
minimum height to base ratio over all faces.

face number that has a height to base ratio of ’ratio’.
datnod(3,6000)

integer nconn(3,6000),nbound(3,6000)
common/params/avedge,edgemx,mxedge,edgemn,mnedge,tarea,avarea,
$mxarea,mnarea,areamx,areamn,ratio,mnrtio
common/mchval/valmax,valmin
save /params/
the following line is a statement function.
size(x,y,z)=sqrt (x*x+y*y+z*z)
initialization.
sedgl=0

51

edgemx=valmin
edgemn=valmax
do 20 ie=1,nedges
mult=nconn(3,ie)
ni=nconn(i,ie)
n2=nconn(2,ie)
x=datnod(1,n2)~datnod(1,n1)
y=datnod(2,n2)-datnod(2,n1)
z=datnod(3,n2)-datnod(3,n1)
edgl=size(x,y,z)
sedgl=sedgl+mult*edgl
if(edgl.gt.edgemx)then
edgemx=edgl
mxedge=ie
endif
if(edgl.1lt.edgemn)then
edgemn=edgl
mnedge=ie
endif
20 continue
avedge=sedgl/nunknb _
c compute tarea,avarea,mnarea,areamn,mxarea,areamx,ratio,and mnrtio.
ratio=valmax
areamx=valmin
areamn=valmax
tarea=0.
do 40 iface=1,nfaces
isi=nbound(1,iface)
is2=nbound(2,iface)
is3=nbound(3,iface)
call facvtx(nconn,nedges,isl,is2,is3,nv1,nv2,nv3)
call vtxcrd(datnod,nnodes,nvi,nv2,nv3,x1,x2,x3,y1,y2,y3,z1,22,23
>)
ximx3=x1-x3
yimy3=yi-y3
zimz3=z1-2z3
x2mx3=x2-x3
y2my3=y2~-y3
z2mz3=z2-2z3
x2mx1i=x2-x1
y2my1=y2-y1i
z2mzi=z2-z1
¢ compute area of face by taking the cross product of two edge vectors.
vx=yimy3*z2mz3-z1imz3+y2my3
vy=z1mz3*x2mx3-x1mx3*z2mz3
vz=x1mx3*y2my3-y1imy3*x2mx3
area=.5*size(vx,vy,vz)
¢ compute the square of the lengths of each side.
ris=x2mx3*x2mx3+y2my3*y2ny3+z2mz3*z2mz3

52

r2s=x1imx3*x1mx3+y1imy3*yimy3+zimz3*zim=z3
r3s=x2mx1*x2mx1+y2my1*y2myi+z2mz1*z2m=1
¢ compute the height to base ratios.
area2=areatarea
htbl=area2/ris
htb2=area2/r2s
htb3=area2/r3s
htbmin=amini(htbi,htb2,htb3)
tarea=tareat+area
if(area.gt.areamx)then
mxarea=iface
areamx=area
endif
if(area.lt.areamn)then
mnarea=iface
areamn=area
endif
if (htbmin.lt.ratio)then
nnrtio=iface
ratio=htbmin
endif
40 continue
avarea=tarea/nfaces
write(3,110)
110 format(/25x,’body parameter list’/)
write(3,111) nnodes,nedges,nfaces,nunknb
111 format(10x, ‘number of vertices=’,i4,/10x,’number of edges=’,i4,/10
>x, ’number of faces=’,i4,/10x, 'number of edges including multiplici
>ty=?,i4)
write(3,205)
205 format(/25x,’modeling parameter list (meters)’/)
write(3,206) tarea
206 format(10x,’surface area of the scatterer=’,e12.5,1x,’sq.meters’)
write(3,209) avedge,mxedge,edgemx,mnedge,edgemn
209 format(10x,’average edge length=’,1e12.5,1x, ’meters’,
$/10x, *maximum edge length(edge no.’,i3,’)=’,e12.5,1x, 'meters’,
$/10x, ‘minimum edge length(edge mno.’,i3,’)=’,e12.5,1x, meters’)
write(3,210) avarea,mxarea,areamx,mnarea,areamn
210 format(10x,’average face area =’,el2.5,1x,’sq.meters’,/10x,
$’maximum face area (face no.’,i4,1x,’)=’,e12.5,1x,’sq.meters’,/
$10x, 'minimum face area (face mno.’,i4,1x,’)=’,e12.5,1x,’sq.meters’)
write(3,211) mnrtio,ratio
211 format(10x,’minimum face height to base ratio (face no.?,
$i4,1x,’)=’,e11.5)
return

Cc=sms=s===================== e e e e e e e e

subroutine facedg(nfaces,nbound,iface,iedgl,iedg2,iedg3)

¢ this subroutine returns the edges of face number iface.
integer nbound(3,6000)
iedgl=nbound(1,iface)
iedg2=nbound(2,iface)
iedg3=nbound(3,iface)
return
end

c .

subroutine facvtx(nconn,nedges,iel,ie2,ie3,nvi,nv2,nv3)

this subroutine returns the vertices of a given face
nvl is node opposite edge iel.
nv2 is node opposite edge ie2.
nv3 is node opposite edge ie3.
integer ncomnn(3,6000)
¢ the node nvl is the node that edges 2 and 3 have in common.
¢ the node nv3 is the other node on edge 2.
if(nconn(1,ie2).eq.nconn(1,ie3).or.nconn(1,ie2).eq.nconn(2,ie3))
$then
nvi=nconn(i,ie2)
nv3=nconn(2,ie2)
else
nvi=nconn(2,ie2)
nv3=nconn(1,ie2)
endif
¢ the node nv2 is the node that edges 1 and 3 have in common.
if(nconn(1,iel).eq.nconn(1,ie3).or.nconn(1,iel).eq.nconn(2,ie3))
$then
nv2=nconn(1,iel)
else
nv2=nconn(2,iel)
endif
return
end

O 0 0 o a

subroutine vtxcrd(datnod,nnodes,n1,n2,n3,x1,x2,x3,y1,y2,y3,zi,z2,
>z3) :
c======s=sssss=ssomsmmszsscsssssssssssossssssms=ssss=ssossoccooooooososssss
¢ this subroutine gets the coordinates of the vertices of a face
‘dimension datnod(3,6000)
xi=datnod(1,n1)
yi=datnod(2,n1)
zi=datnod(3,n1)
x2=datnod(1,n2)
y2=datnod(2,n2)
z2=datnod(3,n2)
x3=datnod(1,n3)
y3=datnod (2,n3)
z3=datnod(3,n3)

o4

return
end

Subroutines GEOM, FACETCK, and AXB are used here. Listings appear in Ap-
pendix A.

55

APPENDIX C: PATCH-TO-ACAD TRANSLATOR CODE

As described in Section 5.2, there are two versions of the PATCH-to-ACAD trans-

lator: PTA and PTF. PTA translates the entire patch file geometry as a single part.
PTF translates each facet as a single part. Only PTF is listed here. Therefore, in the
case of PTF, the file length is much greater, but ACAD is able to manipulate each
facet. Facet checking is used in subroutine GEOM.

o 00000000000

11

15

20
c

20
c

4

program ptf.f
(similar to pta.f version 3 - uses INSCRIBED CIRCLE face check)

"patch to facet" translator
**xkkxkx differs from pta.f in that each triangle is #kkdkkkkk
k an individual part ek ko ok o

this program reads a file named "in.patch" then reformats the data
and writes it to the file named "out.facet" which can be read into
acad as a *.facet file
X,y,z are node coordinates (index is facet number)
datnod and nconn are same as in patch.f
dimension node(3,6000),nbound(3,6000),np(6000),indsum(6000)
dimension datnod(3,6000),nconn(3,6000),istart(6000)
character*80 title
character*19 dumi
character*il dum2
verbose mode: iverb=0 displays progress
iverb=0
skokokkkkkkkkkkkkkkkkk yead patch file *k*kkkkk ¥ ek sk kA k
open(2,file=’in.patch’,status=’o0ld’)
read(2,11) title
format (a80)
read(2,*) nverts,nedges
do 151 nn=1,nverts
1 read(2,*) n,datnod(i,n),datnod(2,n),datnod(3,n)
do 200 nn=1,nedges
0 read(2,*) n,nconn(i,n),nconn(2,n)
f£ill array nbound with edges of each face
call geom(datnod,nconn,nedges,indsum,nbound,
$ nfaces,nunknb)
do 201 nf=1,nfaces
istart(nf)=nf
istart(nf)=nf+1
call prntbnd(nconn,nbound,istart,nf,nedges,nfaces,nfaces)
1 continue
get body parameters
call bodpar(datnod,nconn,nbound,nverts,nedges,nfaces,nunknb)
find the verticies of each face and put in array node

96

do 600 n=1,nfaces

if(iverb.eq.0) write(6,*) ’finding vertices of face ’,n
ii=nbound(1,n)
np(1)=nconn(1,i1)
np(2)=nconn(2,i1)
i2=nbound(2,n)
np(3)=nconn(1,i2)
np(4)=nconn(2,i2)
i3=nbound(3,n)
np(5)=nconn(1,i3)
np(6)=nconn(2,i3)

¢ find the three unique points
node(1,n)=np(1)
node(2,n)=np(2)
ieg=3
do 603 ii=3,6
npt=np(ii)
if((npt.ne.np(1)).and. (npt.ne.np(2))) then
¢ must be the third node :
node(3,n)=npt

go to 602
endif

603 continue

602 continue

if(iverb.eq.0) write(6,*) ’vertices are: ’,(node(jj,n),jj=1,3)
600 continue
C *k¥kkk ** write facet file **x* ¥ ¥ dekkk -
title=’FACET FILE V3.0 SG4D
open(1,file=’out.facet’)
¢ ignoring material parameters
write(1,1) title
¢ number of parts is the number of facets
write(1,2) nfaces
do 20 n=1,nfaces
write(1,13) ’ FFace ’,n
13 format (a7,i4)
write(i,4) 0
¢ each facet has 3 vertices
write(1,4) 3
do 40 m=1,3 ‘
write(1,8) datnod(1,node(m,n)),datnod(2,node(m,n)),
& datnod(3,node(m,n))
40 continue
write(1,2) 1
write(1,*) ’Tri Sheet 0’
write(1,7) 3,1,0,0,0,0,0
write(1,9) 1,2,3
20 continue
1 format (a28)

2
3
4
5
6
7
8
9
c

90

140
100

150
101
998

format (i5)

format (a80)

format(il)

format (i7)
format(2(f14.6,1x),f14.6)
format(71i7)

format (3(£8.2,1x))

format (2x,3i5)

write new data in MATLAB files

open(12,file=’xpts.m’
open(13,file=’ypts.m’)
open(14,file=’zpts.m’)
open(15,file=’endl.m’)
open(16,file=’end2.m’)
format(ib)

do 140 n=1,nverts
write(12,100) datnod(i,n)
write(13,100) datnod(2,n)
write(14,100) datnod(3,n)
continue

format(£15.4)

do 150 n=1,nedges
write(15,101) nconn(i,n)
write(16,101) nconn(2,n)
continue

format (i5)

continue

stop

end

subroutine prntbnd(nconn,nbound,istart,i,nedges,nfaces,nbodys)

t
i

O 00 0 00 0 000

cl

his subroutine prints the edges and the vertices of each face.
nput:
nconn has the vertices and the multiplicity factor for each edge.
nbound has the edges for each face.
istart has the beginning faces for each body.
i is the present body.
nedges is the total number of edges.
nfaces is the total number of faces.
nbodys is the total number of bodys.
integer nconn(3,7000) ,nbound(3,7000),istart(7000)
integer nverts(7000,3)
open(3,file=’facelist’)
open(9,file=’facedat’)
open(20,file=’nodel.m’)
open(21i,file=’node2.m’)
open(22,file=’node3.m’)
oop through the faces of this body.

58

do 10 ilO0=istart(i),istart(i+1)-1
call facvtx(nconn,nedges,nbound(1,i10),nbound(2,i10),
>nbound(3,i10) ,nvi,nv2,nv3)
write(3,98)iio,nbound(1,i10),nbound(2,i10),nbound(3,i10),nv1,nv2
>,nv3
¢ write face number and vertices to ¢‘facedat’’
write(9,*)il10,nv1,nv2,nv3
write(20,100) nvi
write(21,100) nv2
write(22,100) nv3
nverts(ii0,1)=nvi1
nverts(il10,2)=nv2
nverts(ii0,3)=nv3
10 continue
98 format(ix,’face’,i5,’ has edges’,3i5,’ with vertices’,3i5)
100 format(i6)
return
end

this subroutine computes the body parameters
input:
datnod(i,j) i=1,2,3 are the x,y,2 coordinates of the jth node.
nconn(3,j): edge j runs from node nconn(1,j) to node nconn(2,3j)
nconn(3,j) is the multiplicity of the jth edge.
nbound(i,j): contains the ith edge of the jth face i=1,2,3.
nnodes = the number of body nodes.
nedges = the number of edges.
nfaces = the number of faces.
nunknb = the number of body unknowns.
output:
avedge = the average edge length(meters**2) including multiplicity.
edgemx = the maximum edge length(meters).
mxedge = the edge number of the edge with length edgemx.
edgemn = the minimum edge length(meters).
mnedge = the edge number of the edge with length edgemn.
tarea = the surface area of the scatter(meters**2):for thin
structures only one side is considered in the surface area.
avarea = the average area of the faces.
mxarea = the number of the face with the maximum area(areamx).
mnarea = the number of the face with the minimum area(areamn).
ratio = the minimum height to base ratio over all faces.
mnrtio = the face number that has a height to base ratio of ’ratio’.
dimension datnod(3,6000)
integer nconn(3,6000) ,nbound(3,6000)
common/params/avedge,edgemx,mxedge,edgemn,mnedge,tarea,avarea,
$mxarea,mnarea,areamx,areamn,ratio,mnrtio
common/mchval/valmax,valmin

O 000 00 0000000000000 O0000 0

c save /params/
¢ the following line is a statement function.
size(x,y,2)=sqrt (x*x+y*y+z+z)
¢ initializatiom.
sedgl=0
edgemx=valmin
edgemn=valmax
do 20 ie=1,nedges
mult=nconn(3,ie)
ni=nconn(i,ie)
n2=nconn(2,ie)
x=datnod(1,n2)-datnod(1,n1)
y=datnod(2,n2)-datnod(2,n1)
z=datnod(3,n2)-datnod(3,n1)
edgl=size(x,y,z)
sedgl=sedgl+mult*edgl
if(edgl.gt.edgemx)then
edgemx=edgl
mxedge=ie
endif
if(edgl.lt.edgemn)then
edgemn=edgl
mnedge=ie
endif
20 continue
avedge=sedgl/nunknb
¢ compute tarea,avarea,mnarea,areamn,mxarea,areamx,ratio,and mnrtio.
ratio=valmax
areamx=valmin
areamn=valmax
tarea=0.
do 40 iface=1,nfaces
isi=nbound(1i, iface)
is2=nbound(2, iface)
is3=nbound(3, iface)
call facvtx(nconn,nedges,is1,is2,is3,nvi,nv2,nv3)
call vtxcrd(datnod,nnodes,nvi,nv2,nv3,x1,x2,x3,y1,y2,y3,21,22,23
>)
ximx3=x1-x3
yimy3=yi-y3
zimz3=z1-z3
x2mx3=x2-x3
y2my3=y2-y3
z2mz3=z2-2z3
x2mx1i=x2-x1
y2myl=y2-yi
z2mzi=2z2-z1
c compute area of face by taking the cross product of two edge vectors.
vx=yimy3*z2mz3-z21imz3*y2my3

60

vy=zZimz3*x2mx3~-x1mx3*z2m=z3
vz=x1mx3*y2my3-y1my3*x2mx3
area=.5*size(vx,vy,vz)

¢ compute the square of the lengths of each side.

r1s=x2mx3*x2mx3+y2my3*y2my3+z2mz3+*z2mz3
r2s=ximx3*x1mx3+yimy3*yimy3+zimz3*zimz3
r3s=x2mx1i*x2mxi+y2myi*y2myl+z2mz1*z2m=z1

¢ compute the height to base ratios.

40

110

111

205

206

209

210

211

area2=areatarea
htbi=area2/ris
htb2=area2/r2s
htb3=area2/r3s
htbmin=amini(htbi,htb2,htb3)
tarea=tareatarea
if(area.gt.areamx)then
mxarea=iface
areamx=area
endif
if(area.lt.areamn)then
mnarea=iface
areamn=area
endif
if (htbmin.lt.ratio)then
mnrtio=iface
ratio=htbmin
endif
continue
avarea=tarea/nfaces
write(3,110)
format(/25x, ' body parameter list’/)
write(3,111) nnodes,nedges,nfaces,nunknb
format (10x, ‘number of vertices=’,i4,/10x,’number of edges=’,i4,/10
>x, ’number of faces=’,1i4,/10x, ’number of edges including multiplici
>ty=’,i4)
write(3,205)
format(/25x, ‘modeling parameter list (meters)’/)
write(3,206) tarea
format(10x, ’surface area of the scatterer=’,e12.5,1x, ’sq.meters’)
write(3,209) avedge,mxedge,edgemx,mnedge,edgemn
format(10x,’average edge length=’,1e12.5,1x, ’meters’,
$/10x, ’maximum edge length(edge mo.’,i3,’)=’,e12.5,1x, 'meters’,
$/10x, ’minimum edge length(edge no.’,i3,’)=’,e12.5,1x, ‘meters’)
write(3,210) avarea,mxarea,areamx,mnarea,areamn
format(10x, ’average face area =’,el12.5,1x,’sq.meters’,/10x,
$’maximum face area (face mo.’,i4,1x,’)=’,e12.5,1x,’sq.meters’,/
$10x, ’minimum face area (face mno.’,i4,1x,’)=’,e12.5,1x,’sq.meters’)
write(3,211) mnrtio,ratio
format(10x, ’minimum face height to base ratio (face no.’,
$i4,1x,’)=",e11.5) '

61

subroutine facedg(nfaces,nbound,iface,iedgl,iedg2,iedg3)

o0 0 o0 0

Cc
C

thi

s subroutine returns the edges of face number iface.
integer nbound(3,7000)

iedgi=nbound(1,iface)

iedg2=nbound(2,iface)

iedg3=nbound(3,iface)

return

end

subroutine facvtx(nconn,nedges,iel,ie2,ie3,nv1,nv2,nv3)

thi
nvi
nv2
nv3

the
the

s subroutine returns the vertices of a given face

is node opposite edge iel.

is node opposite edge ie2.

is node opposite edge ie3.

integer nconn(3,7000)

node nvl is the node that edges 2 and 3 have in common.
node nv3 is the other node on edge 2.

if(nconn(1,ie2).eq.nconn(1,ie3).or.nconn(1,ie2).eq.nconn(2,ie3))

$then
nvi=nconn(1,ie2)
nv3=nconn(2,ie2)
else
nvi=nconn(2,ie2)
nv3=nconn(1,ie2)
endif

¢ the node nv2 is the node that edges 1 and 3 have in common.
if(nconn(1,iel).eq.nconn(1,ie3).or.nconn(1,ie1).eq.nconn(2,ie3))

$then
nv2=nconn(i,iel)
else
nv2=nconn(2,iel)
endif
return
end

subroutine vtxcrd(datnod,nnodes,nl,n2,n3,x1,x2,x3,y1,y2,y3,zi,z2,

>z3)

¢ this subroutine gets the coordinates of the vertices of a face

dimension datnod(3,6000)
x1=datnod(i,n1)
yil=datnod(2,n1)
zi=datnod(3,n1)
x2=datnod(1,n2)

62

y2=datnod(2,n2)
z2=datnod(3,n2)
x3=datnod(1,n3)
y3=datnod(2,n3)
z3=datnod(3,n3)
return

end

Subroutines GEOM, FACETCK, and AXB are used here. Listings appear in Ap-
pendix A.

APPENDIX D: PATCH-TO-NEC TRANSLATOR CODE .

The PATCH-to-NEC translator allows the user to convert a PATCH input file
into a format that can be read by NEC. CAUTION: The correspondence is only ap-
proximate and some errors may result as noted in Section 5.3

¢ program ptn.f
c
¢ "patch to NEC" tramslator
c
¢ this program reads a file named "in.patch" then reformats the data
¢ and writes it to the file named "out.nec" which can be read by NEC.
¢ x,y,z are node coordinates (index is facet number)
¢ datnod and nconn are same as in patch.f
c if iflag=0 edges in the xy plane (i.e., z < eps) are deleted
¢ (omitted in the NEC GW list)
dimension datnod(3,8000),nconn(3,8000)
character*80 title
iflag=0
eps=1.e-4
C Fokskokokkokkokokk ¥* read patch file *¥* Aeokeokokeok sk ok ook o
open(2,file="in.patch’,status=’o0ld’)
read(2,12) title
12 format (a80)
read(2,*) nverts,nedges
do 151 nn=1i,nverts
151 read(2,*) n,datnod(1i,n),datnod(2,n),datnod(3,n)
do 200 nn=1,nedges
200 read(2,*) n,nconn(i,n),nconn(2,n)
C Fkkdkokkkkkkkkkkkkdkkk write NEC file *kskkskskd ¥ ke ok ek sk ok sk ok ok e
¢ patch edge index becomes tag number
¢ radius of each wire is set to 1/10 of its length
open(1,file=’out.nec’)
do 10 ne=1,nedges
¢ coordinates of first end
ni=nconn(1,ne)
x1=datnod(1,n1)
yl=datnod(2,n1)
zl=datnod(3,n1)
¢ coordinates of second end
n2=nconn(2,ne)
x2=datnod(1,n2)
y2=datnod(2,n2)
z2=datnod (3,n2)
c if iflag=0 and this segment lies in the xy plane omit it from
c the GW 1list. Note that the edge list is not compacted, omly
c they are omitted in the write
if(iflag.eq.0) then

64

if((z1.1t.eps).and.(22.1t.eps)) go to 20
endif
segl=sqrt ((x2-x1)*%2+(y2-y1) **2+(22-21)**2)
¢ set radius for this segment
rO=segl/10.
i£(r0.gt.0.2) r0=0.2
if(r0.1t.0.02) r0=0.02
write(1,300) ’GW’,ne,1,x1,y1,21,x2,y2,22,x0
20 continue
10 continue
300 format(a2,1x,2(i4,1x),6(f7.2,2x),f5.2)
write(1,400) *GE’,1,2
write(1,400) °GN’,1
write(1,400) ’EN’
400 format(a2,2x,i1,2x,il1)
stop
end

APPENDIX E: PATCH INPUT CHECKING CODE (KNIT)

KNIT checks a PATCH input file for duplicate edges and nodes.

program knit.f (final version 4: 12/10/95)

removes duplicate nodes in a inpatch file & NONEDGES
finds lines that cross or are parallel
(an edge that has the same node at both ends. this
allows triagles to be built from quadralaterals.)
edge and node tags do not have to be ordered in ’inknit’
edge numbers out will be different than edge numbers in
datnod is the same as in patch.f
dimension new1(5000),new2(5000),datnod(3,5000),nnord(5000)
dimension tmpdat(3,5000),icount(5000),neord(5000)
dimension ivmin(5000),ivtx(5000,2000),iskip(5000),indx(5000)
dimension nedge(5000),node(5000),nflag(5000) ,mflag(5000)
integer tmpnod(5000),end2(5000),end1(5000)
character*80 title
character*8 fin, fout
data nflag/5000%0/,mflag/5000%0/,iscl/1/,iverb/0/
¢ distances less than eps are considered the same
eps=1.e-3
¢ iverb=0: verbose mode —- progress displayed
¢ iscl=0: rescale data
iverb=1
xmin=1.e6
ymin=1.e6
zmin=1.e6
xmax=-1.e6
ymax=-1.e6
zmax=-1.e6

O 00 0 0 a0 00

*k ok ok sk ko %k

c read the inpatch file named inknit
* * ok ks ok ok ok sk Kok ok ok ok
write(6,%*)
& ’enter file name to remove duplicate edges and nodes:’
read(5,1) fin
1 format (a8)
write(6,*)
& ’enter output file name (<9 char & different from input name)’
read(5,1) fout
open(1,file=fin,status=’0ld’)
open(2,file=fout)
read(1,2) title
2 format (a80)
read(1,*) nverts,nedges
write(6,*) ’nverts,nedges=’,nverts,nedges

66

nodes=nverts
do 10 n=1,nverts
read(1,*) node(n),xx,yy,zz
xmax=amax1(xmax,xx)
ymax=amaxi(ymax,yy)
zmax=amaxi(zmax,zz)
xmin=amini (xmin,xx)
ymin=amini(ymin,yy)
zmin=amini(zmin,zz)
tmpdat (1,n)=xx
tmpdat (2,n)=yy
tmpdat (3,n)=zz
datnod(1,n)=tmpdat(1,n)
datnod(2,n)=tmpdat(2,n)
datnod(3,n)=tmpdat(3,n)
tmpnod (n)=node(n)
¢ if the node has been read change the flag from O to 1
if(nflag(node(n)).eq.0) nflag(node(n))=1
10 continue
do 20 n=1,nedges
read(1,*) nedge(n),endi(n),end2(n)
newi(n)=endi(n)
new2(n)=end2(n)
¢ if the edge has been read change the flag from O to 1
if(mflag(nedge(n)).eq.0) mflag(nedge(n))=1
20 continue
¢ check to see if any nodes have not been read
do 30 n=1,nverts
if(nflag(n).eq.0) then
write(6,*) ’node index skipped: ’,n
endif
30 continue
¢ check to see if any edges have not been read
do 35 n=1,nedges
if (mflag(n).eq.0) then
write(6,*) ’edge index skipped: ’,n

endif
35 continue
write(6,*) ’finished reading file inknit’
sk ek ok kR ko *okk *k *

¢ order node numbers from lowest to highest in case they have not
¢ been defined this way
do 573 ni=1,nodes
do 570 n2=1,nodes
¢ find edge nl1 and save
if(node(n2).eq.nl) then
nnord(ni)=ni
datnod(1,n1)=tmpdat(1,n2)
datnod(2,n1)=tmpdat(2,n2)

67

datnod(3,n1)=tmpdat(3,n2)

go to 572
endif
570 continue
572 continue

573 continue
do 575 n=1,nodes
tmpdat(1,n)=datnod(1,n)
tmpdat(2,n)=datnod(2,n)
tmpdat(3,n)=datnod(3,n)
node(n)=nnord(n)
575 continue
write(6,*) ’nodes re-ordered from low to high’
¢ find duplicate vertices and save their indices
c icount(i) counts the number of times vertex i occurs
do 75 ivi=1i,nverts
xi=tmpdat(1,iv1)
yi=tmpdat(2,iv1)
z1=tmpdat(3,iv1)
icount(ivi)=1
¢ keep track of vertex number ivl and its duplicates
¢ ivtx(node number, occurance number, duplicate index)
ivtx(ivi,icount(ivi))=ivi
do 73 iv2=1,nverts
if(ivi.ne.iv2) then
x2=tmpdat (1,iv2)
y2=tmpdat (2, iv2)
z2=tmpdat(3,iv2)
dx=abs(x1-x2)
dy=abs(y1-y2)
dz=abs(z1-22)
if((dx.1t.eps).and.(dy.lt.eps).and.(dz.1t.eps)) then
icount(ivi)=icount(ivi)+1
ivtx(ivi,icount(ivi))=iv2

endif
endif
73 continue
75 continue

if(iverb.eq.0) write(6,*) ’array ivtx filled’

¢ for each vertex find the smallest index
do 78 iv=1,nverts
ivmin(iv)=nverts+1i
do 78 ii=1,icount(iv)
ivmin(iv)=min(ivmin(iv),ivtx(iv,ii))

78 continue

if(iverb.eq.0) write(6,*) ’found smallest index’
¢ find duplicate vertices

irem=0

do 76 ii=1,nverts

68

¢ if minimum index is .1t. ii this is a duplicate
if(ivmin(ii).1t.ii) then
irem=irem+1
iskip(irem)=ii
endif
76 continue
if(iverb.eq.0) write(6,*) ’duplicate vertices tagged’
¢ order the indices to be removed from lowest to highest
if(iverb.eq.0) write(6,*) ’start to re-order indices’
idx=nverts
do 85 il=1,irem
do 83 i2=1,irem-il+i
indx(i1)=min(idx, iskip(i2))

83 continue
idx=indx(i1)+1
85 continue

if(iverb.eq.0) then
write(6,*) ’skip’,’ ?,’ordered’
do 190 ix=1,irem
190 write(6,*) iskip(ix),'* ?,indx(ix)
endif
3k ok ok 3k 3k 3k %k sk ok ok ¥k & ek ¥k ¥ % ¥ ¥ %k ok k k 3k 3k ok ok ok ok o ok ke e ofe e ek
¢ fill array tmpnod with original node values
do 196 nn=1,nverts
tmpnod(nn)=node(nn)
196 continue
¢ set all node indices to minimum value
do 95 nn=1,nverts
iv=tmprod(nn)
node(nn)=ivmin(iv)
95 continue
¢ refill tmpnod with minimum node values
do 96 nn=1,nverts
c set all endpoints to minimum node values
do 91 kk=1,nedges
if(end1(kk).eq.tmpnod(nn)) newi(kk)=node(nn)
if (end2(kk).eq.tmpnod(nn)) new2(kk)=node(nn)
91 continue
96 continue
do 192 kk=1,nedges
end1(kk)=newi(kk)
end2(kk)=new2(kk)
192 continue
¢ remove duplicate nodes and shift remaining nodes down one for
¢ each previous node removed
do 79 ir=1,irem
do 79 iv=indx(ir),nverts-ir
datnod(1,iv)=datnod(1,iv+1)
datnod(2,iv)=datnod(2,iv+1)

datnod(3,iv)=datnod(3,iv+1)
79 continue
c check each node to see how many previous nodes have been removed
¢ (to determine the number of steps to decrement the index)
do 90 nn=1,nverts
idx=tmpnod(nn)
c count vertices .lt. idx that have been removed
¢ nodes greater than iskip(ir) drop one; those less than iskip(ir) stay
iter=0
do 93 ir=1,irem
if(idx.eq.indx(ir)) go to 90
do 93 ii=1,idx
if(ii.eq.indx(ir)) iter=iter+i
93 continue
it=it+1
node(it)=tmpnod(nn)~iter
¢ find all edges with this node and also shift them down
c note endl & end2 have original node numbers; newl & new2 have new
c node numbers
do 179 kk=1,nedges
if(end1(kk).eq.tmpnod(nn)) newi(kk)=node(it)
if(end2(kk).eq.tmpnod(nn)) new2(kk)=node(it)
179 continue
90 continue
nverts=nverts-irem
write(6,*) ’final number of vertices =’,nverts
do 28 i=1,nedges
end1(i)=new1(i)
28 end2(i)=new2(i)

*ok *k Kk ok dedkkkk kR ' kA *

*
*

¢ rescale data if desired
*okk kR ko *kok ok X ko ok —
if(iscl.eq.0) then
write(6,*) ’rescale data? (O=yes/1=no)’
read(5,*) ans
if(ans.eq.0) then
write(6,*) ’xmax,xmin=’,xmax,xmin
write(6,*) ’ymax,ymin=’,ymax,ymin
write(6,*) ’zmax,zmin=’,zmax,zmin
write(6,*) ’enter scale factor’
read(5,*) fac
do 50 n=1,nverts
datnod(1,n)=fac*datnod(1,n)
datnod(2,n)=fac*datnod(2,n)
datnod(3,n)=fac*datnod(3,n)

*
*

50 continue
endif
endif
s sk o s s e o ok e ok s sk ok ok sk kol ok o e sk o ok ok 3k s ke sl ok o ek o sk e sk e s e sk sk e sk sk ok e de sk ok ok ook o ok sk ok

70

¢ remove duplicate edges and use new node numbers
ok kskeokok ok ok ok o) * ke kok ok ok ok ok ok ¥ Rk Kk *
¢ order edge numbers from lowest to highest in case they have not
¢ been defined this way
do 473 ni=1,nedges
do 470 n2=1,nedges
¢ find edge nl and save
if(nedge(n2).eq.n1) then
neord(ni)=ni
. newi(ni)=endi(n2)
new2(ni)=end2(n2)

go to 472
endif
470 continue
472 continue

473 continue
do 471 nn=1,nedges
if(iverb.eq.0) then
write(6,*) ’nn,nedge,neord=’,nn,nedge(nn),neord(nn)
endif
nedge(nn)=neord(nn)
endi(nn)=newi(nn)
end2(nn)=new2(nn)
471 continue '
write(6,*) ’edges re-ordered from low to high’
%kkxk k ok 4 o 3 ok ke 3k %k k ok ok ofe e 3 ok sk K % sk % ok ek sk
inon=0
do 300 n=1,nedges
if(endi(n).eq.end2(n)) then
inon=inon+1
¢ nonedge found remove edge index and slide all edges down one
do 310 nn=n,nedges+i-inon
endi(nn)=endi(nn+1)
end2(nn)=end2(nn+1)
newi(nn)=newl(nn+1)
new2(nn)=new2(nn+1)
nedge(nn)=nn
neord(nn)=nn

310 continue
endif
300 continue

nedges=nedges—inon
write(6,*) ’number of nonedges found was ’,inon
if(iverb.eq.0) then
write(6,*) ’start to generate edge connection list’
endif
¢ search for duplicate edges
c for each edge (n=1,nedges) check the vertices to see if they have
¢ been previously assigned an edge number. save the unique set of

71

¢ endpoints in endl and end2. 1length will be ncount.
do 175 iel=1,nedges
icount(iel)=1
npl=endi(iel)
np2=end2(iel)
¢ keep track of vertex number ivl and its duplicates
¢ ivtx(node number, occurance number, duplicate index)
ivtx(iel,icount(iel))=iel
do 173 je2=1,nedges
if(iel.ne.ie2) then
mpi=endi(ie2)
mp2=end2(ie2)
if(((npl.eq.mpl).and. (np2.eq.mp2)).or.
& ((np2.eq.mp1).and.(npl.eq.mp2))) then
c .or.(npl.eq.np2)) then
icount(iel)=icount(iel)+1
ivtx(iel,icount(iel))=ie2

endif

endif
173 continue
175 continue

¢ for each edge find the smallest index
do 178 ie=1,nedges
ivmin(ie)=nedges+1
do 178 ii=1,icount(ie)
ivmin(ie)=min(ivmin(ie),ivtx(ie,ii))
178 continue
¢ find duplicate edges
irem=0
do 176 ii=1,nedges
¢ if minimum index is .lt. ii this is a duplicate
if(ivmin(ii) .1t.ii) then
irem=irem+1
iskip(irem)=ii
endif
176 continue .
¢ order the edges to be removed from lowest to highest
write(6,*) ’number of duplicate edges=’,irem
if(iverb.eq.0) write(6,*) ’re-ordering edges’
idx=nedges
do 185 il=1,irem
do 183 i2=1,irem-ii+1
indx(i1)=min(idx,iskip(i2))

183 continue
idx=indx(i1)+1
185 continue

if(iverb.eq.0) then
write(6,*) ’skip’,’ !, Yordered’
do 191 ix=1,irem

72

191 write(6,*) iskip(ix),’ ?,indx(ix)
endif
I R Rl b R T SRR W SN
¢ remove duplicate edges and shift remaining edges down one for
¢ each previous edge removed
do 279 ir=1,irem
do 279 ie=indx(ir),nedges-ir
newi(ie)=newi(ie+1)
new2(ie)=new2(ie+1)
c neord(ie)=neord(ie+1)
279 continue
nedges=nedges—irem
write(6,*) ’final number of edges =’,nedges
if(iverb.eq.0) write(6,*) ’edge connection list generated’
¥%* THIS PORTION OF THE CODE HAS NOT BEEN VALIDATED s#kkkskskiksk
¢ find lines that cross or overlap
c. write(6,*)

& *x ' AR AR

*
3

¥k Hk 2

do 909 na=1,nedges
ne=nedge(na)
ni=endi(ne)
n2=end2(ne)
xi=datnod(1,n1)
yi=datnod(2,n1)
zl=datnod(3,n1)
x2=datnod(1,n2)
y2=datnod(2,n2)
z2=datnod(3,n2)
do 908 mb=1,nedges
me=nedge (mb)
dont check if same edge
if(me.le.ne) go to 907
mi=end1(me)
m2=end2(me)
at this point it has been assumed that all duplicate edges have
been removed. don’t want to consider lines that have a common end point
if((nl.eq.m1).or.(n2.eq.m2).o0rx.
& (nl.eq.m2).or.(n2.eq.mi)) go to 907
x3=datnod(1,m1)
y3=datnod(2,m1)
z3=datnod(3,m1)
x4=datnod (1,m2)
y4=datnod(2,m2)
z4=datnod(3,m2)
write(6,*) ’calling intersect for edges ’,me,ne
call intersect(x1i,yi,zi,x2,y2,22,x3,y3,23,
& x4,y4,z4,iflag,ipar)
if(ipar.eq.0)
& write(6,*) ’WARNING - edges overlap: ’,me,ne

O 00 a6 0000000000000 0000000060ao000O0.o0

73

c
c
907
908
909

*kxk

if(iflag.eq.0)

& write(6,*) ’WARNING - edges cross: ’,me,ne

c write reformated data to file
ook ok ek o ke ok ok ok o ok ok ko b ek k Kok

151

200

continue
continue
continue
write(6,*)
& 2 dekkokkokok koK kb ok ok ok *k ¥ ok Kk ok ok ok *kok ko okok
- ok NP, * Fkok ok ok kokkok sk ok

open(2,file=fout)
write(2,2) title
write(2,*) nverts,nedges
do 151 n=1,nverts

*x

write(2,*) node(n),datnod(1i,n),datnod(2,n),datnod(3,n)

do 200 n=1,nedges
nedge(n)=neord(n)
write(2,*) nedge(n),newi(n),new2(n)

c write new data in MATLAB files

98

140
100

150
101
998

a0 o0 ao0

open(12,file="xpts.m’)
open(13,file=’ypts.m’)
open(14,file=’zpts.m’)
open(15,file=’end1.m’)
open(16,file=’end2.m’)
format (i5)

do 140 n=1,nverts
write(12,100) datnod(1i,n)
write(13,100) datnod(2,n)
write(14,100) datnod(3,n)
continue

format (£15.4)

do 150 n=1,nedges
write(15,101) newi(n)
write(16,101) new2(n)
continue

format (i5)

continue

stop

end

subroutine intersect(xi,yi,z1,x2,y2,z2,x3,y3,23,

& x4,y4,z4,iflag,ipar)
subroutine to find the intersection of two lines
endpoints of line 1i: (x1,y1,z1) and (x2,y2,22)
endpoints of line 2: (x3,y3,z3) and (x4,y4,z4)
if there is an intersection iflag=0
ipar=0 denotes overlapping lines

tol=1.e-5
iflag=1
ipar=1

74

al=x2-x1
bl=y2-y1
cl=z2-z1
a2=x4-x3
b2=y4-y3
c2=z4-23
vi=bl*c2-b2*cl
v2=ci*a2-c2#*al
v3=a2*bl~ai*b2
di1=x3-x1
d2=y3-y1
d3=z3-z1
rdotv2=di*a2+d2*b2+d3*c2
rdotvi=di*al+d2*b1+d3*c1
vidotv2=ail*a2+bi*b2+ci*c2
v2dotv2=a2+a2+b2¥b2+c2*c2
v1Xv2sq=v1k*2+yv2*+2+v3%*2
if(vixv2sq.1lt.tol) vixv2sq=0.
¢ check to see if the lines are parallel;.set ipar=0 if cross
¢ product is zero
if(vixv2sq.eq.0.) then ‘
¢ if these lines are parallel see if they overlap. note it is
¢ assumed that this subroutine is not called for the same edge
Cc *¥**xx*k* case 1: none of the coeffs are zero *kkk**x*
if((abs(a1).gt.tol).and. (abs(bl).gt.tol).and.
& (abs(c1).gt.tol)) then
write(6,%*) ’casel’
p=(x3-x1)/a1
q=(y3-y1) /bl
r=(z3-z1)/c1
if ((abs(p—q).gt.tol).and. (abs(g-r).gt.tol).and.
& (abs(p-r).gt.tol)) ipar=0
p=(x4-x1)/al
q=(y4-y1)/b1
r=(24-21)/c1
if((abs(p-q).gt.tol) .and. (abs(g-r).gt.tol).and.
& (abs(p-r).gt.tol)) ipar=0
endif
C ***k*k*k** case 2: one of the coeffs are zero *kkkkk*
¢ if a1=0 compare y and z
if((abs(a1).1t.tol).and. (abs(b1).gt.tol).and.
& (abs(c1).gt.tol)) then
c write(6,*) ’case2a’
q=(y3-y1) /b1
r=(23-z1)/cl
if(abs(r-q).gt.tol) ipar=0
q=(y4-y1)/b1
r=(z4-z1)/c1
if(abs(r-q).gt.tol) ipar=0

(2]

endif
¢ if b1=0 compare x and z
if((abs(b1).1t.tol) .and.(abs(al).gt.tol).and.
& (abs(c1).gt.tol)) then
c write(6,*) ’case2b’
p=(x3-x1)/a1
r=(23-z1)/cl
if(abs(p-r).gt.tol) ipar=0
p=(x4-x1)/a1
r=(z4-z1)/cl
if(abs(p-r).gt.tol) ipar=0
endif
c if c1=0 compare x and y
if((abs(c1).1t.tol) .and. (abs(bl).gt.tol).and.
& (abs(al).gt.tol)) then
c write(6,%*) ’case2c’
p=(x3-x1)/al
q=(y3-y1) /b1
if(abs(p-q).gt.tol) ipar=0
p=(x4-x1)/a1
q=(y4-y1) /b1
if (abs(p-q).gt.tol) ipar=0
endif
¢ **kkkkk*k case 3: two of the coeffs are zero ***k*kk*

c if a1=0 and b1=0 line is parallel to z axis
if((abs(b1).1t.tol).and.(abs(al).1lt.tol)) then
if((abs(x1-x3).1t.tol) .and. (abs(yi-y3).1lt.tol)) ipar=0
c write(6,*) ’case3a’

endif
¢ if ai1=0 and c1=0 line is parallel to y axis
if((abs(c1).1t.tol).and. (abs(al).1lt.tol)) then
if((abs(x1-x3) .1t.tol) .and. (abs(z1-z3).1t.tol)) ipar=0
c write(6,*) ’case3b’
endif
¢ if b1=0 and c1=0 line is parallel to x axis
if((abs(c1).1t.tol).and. (abs(bl).1t.tol)) then
if ((abs(y1-y3).1lt.tol) .and. (abs(z1-z3).1t.tol)) ipar=0
c write(6,*) ’case3c’
endif
endif
100 continue
¢ find intersections
if(ipar.ne.0) then
tee=(rdotvi*v2dotv2-rdotv2*v2dotvl)/vixv2sq
if((tee.gt.0.).and.(tee.1t.1.)) then
iflag=0
x0=x1+tee*al
yO=yi+tee*bl
z0=z1+tee*cl

76

c check:
u0=x3+tee*a2
v0=y3+tee*b2
w0=z3+tee*c2
if((abs(x0-u0).gt.tol).or.(abs(y0-v0).gt.tol).or.
& (abs(z0-w0) .gt.tol)) iflag=1
endif
endif
200 return

end

APPENDIX F: GEOMETRY FILE BUILDER (BLDMAT)

BLDMAT generates data files with the “.m” extension so that they can be loaded
into MATLAB. The files are used by the matlab script PLTPATCH to view a three-

dimensional plot of the geometry. BLDMAT also generates and edge connection list
that is identical to that of PATCH.

c program bldmatfck.f (DEVELOPMENT version 2: 2/96)
¢ program to read inpatch data (output from buildn5 or mbuild)
¢ and write the variables to *.m files for use by MATLAB
Fekkdk K ok ook o ek ook) Aok ' Fkekokk ok
parameter(mxunkn-ssoo mxbdnd=2500,mxedgs=5500,mxface=3700,
$ mxfu=5500,mxdjbd=50,mxmult=3)

ek 3k ok ok ok %k ok * 2k 3¢ 2k o 3k ek sk k %% %%k 3k 2k 2k ok ke Ak 3k ok %k ok ok 3k %k
dimension x(mxbdnd),y(mxbdnd), z(mxbdnd) node(mxbdnd)
dimension nedge(mxedgs),npi(mxedgs),np2(mxedgs) ,nbe(mxdjbd)
dimension datnod(3,mxbdnd) ,nconn(3,nxedgs),nbound(3,mxface)
dimension indsum(mxedgs),istart(mxdjbd+1i), 1pvt(mxfu)
dimension iedgf (mxmult+i, mxedgs)
character*50 title
character*9 namein
multi=mxmult+1
write(6,*) ’enter input file name’
read(5,3) namein

3 format (a9)
open(1,file=namein,status=’old’)
read(1,2) title

2 format (a50)
read(1,*) nvert,nedges
nnodes=nvert
write(6,*) ’nvert,nedges=’,nvert,nedges
do 10 n=1,nvert

10 read(1,*) node(n),x(n),y(n),z(n)
do 20 n=1,nedges

20 read(1,*) nedge(n),npi(n),np2(n)

c write new data in MATLAB files
open(i2,file=’xpts.m?)
open(13,file=’ypts.m’)
open(14,file=’zpts.m’)
open(15,file=’endl.m’)

m’)
k’)

open(16,file=’end2.
open(3,file=’facefck’
write(3,*) namein

90 format (i5)
do 40 n=1,nvert
write(12,100) x{(n)
write(13,100) y(n)

78

write(14,100) z(n)
40 continue
100 format(f15.4)
do 50 n=1,nedges
write(15,101) npi(n)
write(16,101) np2(n)
50 continue
101 format(is)
c £ill datnod with node locations
do 110 n~=1,nvert
datnod(1,n)=x(n)
datnod(2,n)=y(n)
datnod(3,n)=z(n)
110 continue
¢ £ill nconn with edge connections.
do 120 n=1,nedges
nconn(1,n)=npi(n)
nconn(2,n)=np2(n)
nconn(3,n)=-1
120 continue
call geom(datnod,nconn,nedges,indsum,nbound,mxface,nfaces,
$ mxbdnd,nunknb,mxedgs)
call curdir(nconn,nbound,nfaces,nedges,mxdjbd,ipvt,istart,
$ nbodys,nbe)
write(6,*) ’number of disjoint bodies is ’,nbodys
do 210 i=1,nbodys
call prantbnd(nconn,nbound,istart,i,nedges,nfaces,nbodys)
210 continue
call edgfac(nconn,nedges,nbound,nfaces,iedgf,multi)
c call edgep(nnodes,nedges,datnod,nconn,nunknb
c $,iedgf,multl,nbound,nfaces)
c get body parameters
call bodpar(datnod,nconn,nbound,nnodes,nedges,nfaces,nbody
$ nunknb)
stop
end

c ——— —_———

S,

subroutine curdir(nconn,nbound,nfaces,nedges,mxdjbd,itree,
$nbodys,nbe)

istart,

c
¢ all edges in the first disjoint surface are numbered consecuti
¢

vely

starting from 1. the edges in the next disjoint surface are numbered

¢ consecutively, starting where the last surface left off.
c

¢ input:

¢ nconn(3,nedges): edge j runs from vertex nconn(1,j) to vertex
nconn(2,j). nconn(3,j)=multiplicity factor of the edge.
nbound(3,nfaces):each face j has edges nbound(i,j) i=1,2,3
j=1,2,...,nfaces. '

O o0 o0

nfaces equals the total number of faces.
nedges equals the total number of edges.
mxdjbd equals the maximum number of expected bodys.

output:
istart(mxdjbd+1) :istart (i)=the lowest numbered face on the ith
tree(disjoint surface)
istart(nbodys+1)=nfaces+1
mxdjbd.ge.nbodys or routine stops and prints a warning.
itree(nfaces)
itree(i) i=1,...,istart(2)-1 =the faces on the first tree.
itree(i) i=istart(j),...,istart(j+1)-1,=the faces on the jth tree.
nbodys equals the number of disjoint surfaces.
nbe(mxdjbd) :nbe(i) contains the number of boundry edges for body i.

O 00 0 0 00 00000000

integer nconn(3,nedges),nbound(3,nfaces),itree(nfaces),
> istart(mxdjbd+1) ,nbe(mxdjbd)
set present tree to first tree.
ntree=total number of faces stored in the tree.
Inf=lowest numbered face occuring in the present tree.
conveniently it happens that itree(inf)=1nf so lnf=lowest index i
so that itree(i) is in the present tree.
do 40 i=1,mxdjbd
nbe(i)=0
40 continue
nfacel=nfaces+1
ntree=1
1nf=1
itree(1nf)=1nf
istart(1)=1nf
do 1 nbodys=1,mxdjbd
c add the number of boundry edges in the first face of this body to
¢ nbe(nbody) .
if (nconn(3,nbound(1,1nf)).eq.0)nbe(nbodys)=nbe(nbodys)+1
if (nconn(3,nbound(2,1nf)).eq.0)nbe(nbodys)=nbe(nbodys)+1
if (nconn(3,nbound(3,1nf)).eq.0)nbe(nbodys)=nbe(nbodys)+1
¢ search for a face that may be added to the present tree.
51 do 50 iface=1nf+1,nfaces
c if iface is already in tree continue search.
do 10 jtree=lnf,ntree
if(iface.eq.itree(jtree))goto 50
10 continue
c test to see if iface has an edge in common with present tree.
lowface=nfacel
c find the lowest face with a common edge.
do 20 jtree=lnf,ntree
c test for a common edge.
do 30 i=1,3
do 31 j=1,3

O 0o 0 oo

80

if (nbound(i,iface).eq.nbound(j,itree(jtree)).and.

$ itree(jtree).lt.lowface)lowface=itree(jtree)
31 continue
30 continue
20 continue

if(lowface.ne.nfacel)then
¢ common edge has been found.
do 60 i=1,3
do 61 j=1,3
if(nbound(i,iface).eq.nbound(j,lowface))then
¢ incriment number of faces in the tree and add iface to present tree.
' ntree=ntree+i

itree(ntree)=iface
¢ add the number of boundry edges in this face to nbe.

if(nconn(3,nbound(1,iface)).eq.0)

> nbe(nbodys)=nbe(nbodys)+1
if(nconn(3,nbound(2,iface)).eq.0)
> nbe(nbodys)=nbe(nbodys) +1
if(nconn(3,nbound(3,iface)).eq.0)
> nbe(nbodys)=nbe(nbodys)+1
goto 51
endif
61 continue
60 continue
endif
50 continue
Inf=ntree+l

if(1lnf.le.nfaces)then
istart(nbodys+1)=1nf
c initialize new tree.
ntree=ntree+i
itree(ntree)=1nf
else
goto 999
endif
1 continue
write(3,99)
99 format(ix,’warning in curdir mxdjbd found but still have faces’,
$’ left’)
stop
999 continue
istart(nbodys+1)=nfaces+1
return
end

subroutine bodpar(datnod,nconn,nbound,nnodes,nedges,nfaces,
$ nbodys,nunknb)

C

¢ input:

O 0 00 0 0 0 00 0 0 0000000000

O a0 0

datnod(i,j) i=1,2,3 are the x,y,z coordinates of the jth node.
nconn(3,j): edge j runs from node nconn(1,j) to node nconn(2,j)
nconn(3,j) is the multiplicity of the jth edge.

nbound(i,j):
nnodes = the
nedges = the
nfaces = the
nunknb = the
output:
avedge = the
edgemx = the
mxedge = the
edgemn = the
mnedge = the
tarea =
avarea = the
mxarea = the
mnarea = the
ratio = the
mnrtio = the
dimension

contains the ith edge of the jth face i=1,2,3.
number of body nodes.

number of edges.

number of faces.

number of body unknowns.

average edge length(meters*+*2) including multiplicity.
maximum edge length(meters).

edge number of the edge with length edgemx.

minimum edge length(meters).

edge number of the edge with length edgemn.

the surface area of the scatter(meters**2):for thin
structures only one side is considered in the surface area.

average area of the faces.

number of the face with the maximum area(areamx).
number of the face with the minimum area(areamn).
minimum height to base ratio over all faces.

face number that has a height to base ratio of ’ratio’.
datnod(3,nnodes)

integer nconn(3,nedges),nbound(3,nfaces)
common/params/avedge, edgenx,mxedge, edgenn,mnedge , tarea,avarea,
$mxarea,mnarea,areamx,areamn,ratio,mnrtio
the following line is a statement function.
size(x,y,z)=sqrt (x*x+y*y+z*z)
initialization.
sedgl=0
valmax=1.e35
valmin=-1.e35
edgemx=valmin
edgemn=valmax
do 20 ie=1,nedges
mult=nconn(3,ie)
ni=nconn(1,ie)
n2=nconn(2,ie)
x=datnod(1,n2)-datnod(1,n1)
y=datnod(2,n2)-datnod(2,n1)
z=datnod(3,n2)~datnod(3,n1)
edgl=size(x,y,2)
sedgl=sedgl+mult*edgl
if(edgl.gt.edgemx)then
edgemx=edgl

endif
if(edgl.lt.edgemn)then
edgemn=edgl
mnedge=ie

mxedge=ie

82

endif

20 continue

avedge=sedgl/nunknb

¢ compute tarea,avarea,mnarea,areamn,mxarea,areamx,ratio,and mnrtio.

ratio=valmax
areamx=valmin
areamn=valmax
tarea=0.
do 40 iface=1,nfaces
isi=pbound(1,iface)
is2=nbound (2, iface)
is3=nbound(3,iface)
call facvtx(nconn,nedges,isi,is2,is3,nvi,nv2,nv3)
call vtxcrd(datnod,nnodes,nv1,nv2,nv3,x1,x2,x3,y1,y2,y3,zi,z2,z$
>)
ximx3=x1-x3
yimy3=y1-y3
zimz3=21-z3
x2mx3=x2~-x3
y2my3=y2-y3
z2mz3=22~-23
x2mx1=x2-x1
y2myi=y2~y1
z2mz1=22-z1

¢ compute area of face by taking the cross product of two edge vectors.
vx=ylmy3*z2mz3-z1mz3*y2my3
vy=zimz3*x2mx3-x1imx3*z2mz3
vz=x1mx3+y2my3-yimy3*x2mx3
area=.5*size(vx,vy,vz)

c compute the square of the lengths of each side.
ris=x2mx3*x2mx3+y2my3*y2my3+z2mz3*z2mz3
r2s=x1mx3*ximx3+yimy3*yimy3+zimz3*+21imz3
r3s=x2mx1*x2mx1+y2my1*y2my1+z2mz1*z2mz1

c compute the height to base ratios.
area2=areatarea
htbil=area2/ris
htb2=area2/r2s
htb3=area2/r3s
htbmin=amini (htbl,htb2,htb3)
tarea=tareat+area
if(area.gt.areamx)then

mxarea=iface
areamx=area
endif
if(area.lt.areamn)then
mnarea=iface
areamn=area
endif
if(htbmin.lt.ratio)then

mnrtio=iface
ratio=htbmin

endif
40 continue
avarea=tarea/nfaces
write(3,110)
110 format(/25x,’body parameter list’/)
write(3,111) nnodes,nedges,nfaces,nunknb,nbodys
111 format(10x,’number of vertices=’,i5,/10x, ’number of edges=’,i5,/10
>x,’number of faces=’,i5,/10x, ’number of edges including multiplici
>ty=’,i5,/10x, *number of bodies=’,i5)
write(3,205)
205 format(/25x,’modeling parameter list (meters)’/)
write(3,206) tarea)
206 format(10x,’surface area of the scatterer=’,el12.5,1x, ’sq.meters’)
write(3,209) avedge,mxedge,edgemx,mnedge,edgemn
209 format(10x,’average edge length=’,1e12.5,1x, ’meters’,
$/10x, ‘maximum edge length(edge mno.’,i5,’)=’,e12.5,1x, meters’,
$/10x, ’minimum edge length(edge no.’,i5,’)=’,e12.5,1x, meters’)
write(3,210) avarea,mxarea,areamx,mnarea,areamn
210 format(10x,’average face area =’,e12.5,1x,’sq.meters’,/10x,
$’maximum face area (face mo.’,i5,1x,’)=’,e12.5,1x,’sq.meters’,/
$10x, minimum face area (face mo.’,i5,1x,’)=’,e12.5,1x,’sq.meters’)
write(3,211) mnrtio,ratio
211 format(10x,’minimum face height to base ratio (face no.’,
$i5,1x,?)=’,e11.5)
if((areamn.lt.1.e-10).or.(ratio.1t.1.e-10)) then
write(6,*) *TRIANGLES WITH ZERO AREA’
stop
endif
return
end
c R
subroutine facvtx(nconn,nedges,iel,ie2,ie3,nvi,nv2,nv3)
P —— e mmmemm e ——————————o—mem——mmmmmmm
c nvl is node opposite edge iel.
¢ nv2 is node opposite edge ie2.
c nv3 is node opposite edge ie3.
integer nconn(3,nedges)
¢ the node nvl is the node that edges 2 and 3 have in common.
c the node nv3 is the other node on edge 2.

if(nconn(1,ie2).eq.nconn(1,ie3d) . .or.nconn(1,ie2).eq.nconn(2,ie3))
$then
nvi=nconn(1i,ie2)
nv3=nconn(2,ie2)
else
nvi=nconn(2,ie2)
nv3=nconn(1,ie2)
endif

84

Cc

c== o

the node nv2 is the node that edges 1 and 3 have in common.

if(nconn(i,iei).eq.nconn(i,ie3).or.nconn(l,iei).eq.nconn(2,ie3))

$then
nv2=nconn(1,iel)
else
nv2=nconn(2,iel)
endif
return
end

subroutine vtxcrd(datnod,nnodes,n1,n2,n3,x1,x2,x3,y1,y2,y3,zi,z2,

>z3)

c== s e s — et ——— U

dimension datnod(3,nnodes)
x1=datnod(1,n1)
yi=datnod(2,n1)
zi=datnod(3,n1)
x2=datnod(1,n2)
y2=datnod(2,n2)
z2=datnod (3,n2)
x3=datnod(1,n3)
y3=datnod(2,n3)
z3=datnod(3,n3)
return

end

QO a0 0 0 0 000000

0o o0

[

input:
edge ie runs from vertex nconn(i,ie) to vertex ncomn(2,ie)
and has multiplicity nconn(3,ie).
face iface has edges nbound(j,iface) j=1,2,3
multl is set in the main program and multi-i.ge.the
maximum multiplicity of any edge.
output:
array iedgf for an edge with multiplicity mult
iedgf(1,ie)=the lowest numbered face comnected to edge ie.
iedgf(2,ie)=the next lowest numbered face connected to ie.
iegdf(mm,ie)=the last face comnected to ie.
where mm is the number of faces comnected to edge ie.
integer ncomnn(3,nedges),nbound(3,nfaces),iedgf(multi,nedges)
initialize the array iedgf.
do 5 ie=1,nedges
do 6 m=1,multil
iedgf(m,ie)=0
continue
continue
£ill array iedgf.

C
C
[+

a 00 0000 000000000000

do 100 ie=1,nedges
multei=nconn(3,ie)+1
m=0
do 50 if=1,nfaces
if(m.ge.multel)go to 100
if(ie.eq.nbound(1,if).or.ie.eq.nbound(2,if).or.ie.eq.
$ nbound(3,if))then
m=m+1
iedgf(m,ie)=if
endif

B0 continue
100 continue

write(3,*) ? ?
do 200 ie=1,nedges
write(3,201)ie
write(3,*) (iedgf(m,ie),m=1,nconn(3,ie)+1)

200 continue
201 format(ix,’edge’,i5,’ is attached to faces ’,)

return
end
subroutine edgep(nnodes,nedges,datnod,nconn,nunknb
> ,iedgf,multi,nbound,nfaces)
input:
nnodes=the number of body mnodes.
nedges=the number of edges.
nunknb=the number of body unknowns before considering the
symmetry plane attachments.
multi=the maximum allowed multiplicity for an edge plus 1.
nfaces=the number of faces.
datnod(i,n)=the x,y,z components(i=1,2,3) of the nth node n=1,nnodes.
nconn(i,ie) i=1,2,3: edge ie (ie=1,nedges) runs from node nconn(1,ie)
to nconn(2,ie) and has multiplicity nconn(3,ie)(before any symmetry
plane attachments are considered).
nbound(j,iface) j=1,2,3 are the three edges attached to face
number iface. iface=1,nfaces.
iedgf(m,ie) m=1,...,nconn(3,ie)+1 contains the faces attached to edge
number ie (before any symmetry plane attachments are considered).
ie=1,...,nedges.
output:
for each edge ie that is connected to at least one a p.e.c. symmetry plame
the number of body unknowns(nunknb) is incrimented by 1.
the edge vertex comnection list with edge multiplicities is outputted
after accounting for all symmetry plane attachments.

dimension datnod(3,nnodes),nconn(3,nedges),igndp(3),
> iedgf(multi,nedges),nbound(3,nfaces)

common/gplane/ngndp, igndp

logical lfcpmc

86

c save /gplane/
if(ngndp.gt.0)then
¢ if the maximum distance from an edge to a symmetry plane is less than or
¢ equal to edged, the edge is assumed connected to that symmetry plane.
edged=1e-7
do 100 ie=1,nedges
ni=nconn(1,ie)
n2=nconn(2,ie)
x1=abs(datnod(i,n1))
yil=abs(datnod(2,ni))
zl=abs(datnod(3,n1))
x2=abs(datnod(1,n2))
y2=abs(datnod(2,n2))
z2=abs(datnod(3,n2))
xm=amax1(x1,x2)
ym=amax1(y1,y2)
zm=amax1(z1,z2)
ix=0
iy=0
iz=0
if(xm.le.edged)ix=igndp(1)
if(ym.le.edged)iy=igndp(2)
if(zm.le.edged)iz=igndp(3)
npec=-(amin0(ix,0)+amin0(iy,0)+amin0(iz,0))
npmc=amax0(ix,0)+amax0(iy,0)+amax0(iz,0)
if(npec.ge.1)then
c case edge is attached to at least pec
nunknb=nunknb+1
nconn(3,ie)=nconn(3,ie)+1
endif
100 continue
endif
write(3,29)
29 format(/14x,’edge-vertex comnection list’/)
do 40 i=1,nedges
write(3,331)i,nconn(1,i),nconn(2,i),nconn(3,i)
40 continue
331 format(3x,’edge’,i5,’ goes from vertex’,i5,’ to vertex’,is,
$ mult=’,i3)
return
end

C==s=====orssoooz=m—————=—=ss-—=msc——=o=—== ———

subroutine prntbnd(nconn,nbound,istart,i,nedges,nfaces,nbodys)

c e e ——

¢ this subroutine prints the edges and the vertices of each face.

¢ input:

¢ nconn has the vertices and the multiplicity factor for each edge.
¢ nbound has the edges for each face.

¢ istart has the beginning faces for each body.

87

¢ 1 is the present body.
¢ nedges is the total number of edges.
¢ nfaces is the total number of faces.
¢ nbodys is the total number of bodys.
integer nconn(3,nedges),nbound(3,nfaces),istart (nbodys+1)
integer nverts(10000,3)
open(20,file=’nodel.m’)
open(21,file=’node2.m’)
open(22,file=’node3.m’)
c loop through the faces of this body.
do 10 i10=istart(i),istart(i+1)-1
call facvtx(nconn,nedges,nbound(1,i10),nbound(2,i10),
>nbound(3,i10) ,nvi,nv2,nv3)
write(3,98)i10,nbound(1,i10),nbound(2,i10),nbound(3,i10) ,nvi,nv2
>,nv3
write face number and vertices to ¢ ‘facedat’’
write(9,%)il10,nvi,nv2,nv3
write(20,100) nvi
write(21,100) nv2
write(22,100) nv3
nverts(i10,1)=nvi
nverts(i10,2)=nv2
nverts(i10,3)=nv3
10 continue
98 format(1ix,’face’,ib,’ has edges’,3i5,’ with vertices’,3ib)
100 format(i6)
return
end

[¢ BN ¢

Subroutines GEOM, FACETCK, and AXB are used Illere.' Listings appear in Ap-
pendix A.

88

APPENDIX G: MATLAB GEOMETRY VIEWER (PLTPATCH)

PLTPATCH uses the data files produced by BLDMAT to plot the “inpatch” ge-
ometry. PLTPACH has flags that can be changed by the user to choose between wire
grid, 3D, and 3D with hidden lines.

% Program to read "buildn5" data and plot it in MATLAB
% node (x,y,z) coordinates
clear
clf
% legend:
% icur=0: plot wire grid _
% icur=1: surface plot (with hidden lines)
% icur=2: surface plot with current intensities
% icur=3: plot currents for a "deck walk"
icur=0;
load xpts.m
load ypts.m
load zpts.m
nverts=length(xpts);
% node connection list
load endi.m
load end2.m
nedges=length(endl);
% face commection list
load nodel.m
load node2.m
load node3.m
nfaces=length(node3);
% load vind array which gives the three nodes for each triangle
for i=1:nfaces
pts=[nodei1(i) node2(i) node3(i)];
vind(i,:)=pts;
end .
% Read currents if intenmsities are to be plotted
if icur==
load currents.m
currents=10*logi0(currents+1.e~10);
minc=min{currents);
maxc=max{currents);
currents={currents-minc)/(maxc-minc);
end
% This section plots a mesh
if icur==
for i=1:nfaces
X=[xpts(vind(i,1)) xpts(vind(i,2)) xpts(vind(i,3)) xpts(vind(i,1))];
Y=[ypts(vind(i,1)) ypts(vind(i,2)) ypts(vind(i,3)) ypts(vind(i,1))];
Z=[zpts(vind(i,1)) zpts(vind(i,2)) zpts(vind(i,3)) zpts(vind(i,1))];

89

plot3(X,Y,Z, 'm’)
if i ==
axis equal
view(60,45)
hold on
end
end
end
% This section plots surfaces (therefore can use hidden)
if icur”=0
% length 64 map
colormap(hot)
currents=currents*64;
it=0;
for i=1:nfaces
it=it+1;
X=[xpts(vind(i,1)) xpts(vind(i,1)) ; xpts(vind(i,2)) xpts(vind(i,3))];
Y=[ypts(vind(i,1)) ypts(vind(i,1)) ; ypts(vind(i,2)) ypts(vind(i,3))];
Z=[zpts(vind(i,1)) zpts(vind(i,1)) ; zpts(vind(i,2)) zpts(vind(i,3))];
% Save handles for each triangle
if it==
axis equal
view(60,45)
hold on
end
if icur==
C=[floor(currents(i)) floor(currents(i)) ;
floor(currents(i)) floor(currents(i))];
splt(it)=surf(X,Y,Z,C);
end
if icur==1
splt(it)=surf(X,Y,2);
set(splt(it),’facecolor’, 'black’);
end
% £i113(X,Y,Z,C);
% patch(x,y,z)
set(splt(it),’edgecolor’, ’white’);
end
end
% label nodes if desired
ilabn=1;
if ilabn==0
for i=1:nverts
text (xpts(i),ypts(i),zpts(i),num2str(i))
end
end
% label edges
ilabe=0;
if ilabe==

90

for i=1:nedges
xav=(xpts(end1(i))+xpts(end2(i)))/2.;
yav=(ypts(end1(i))+ypts(end2(i)))/2.;
zav=(zpts(end1(i))+zpts(end2(i)))/2.;
text(xav,yav,zav,num2str(i))

end

end

end

axis square

xlabel(’x’)

ylabel(’y’)

Zzlabel(’z’)

hold off

delx=max(xpts)-min(xpts);
dely=max(ypts)-min(ypts);
delz=max(zpts)-min(zpts);
del=max([delx dely delzl);
axis([min(xpts) ,min(xpts)+del,min(ypts),min(ypts)+del,...

min(zpts) ,min(zpts)+del])

91

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
8725 John J. Kingman Road, STE 0944
Ft. Belvoir, VA 22060-6218

Dudley Knox Library
Naval Postgraduate School
411 Dyer Road

Monterey, CA 93943-5101

Chairman, Code EC

Department of Electrical and Computer Engineering
Naval Postgraduate School

833 Dyer Road, Room 437

Monterey, CA 93943-5121

Prof. David C. Jenn, Code EC/Jn

Department of Electrical and Computer Engineering
Naval Postgraduate School

833 Dyer Road, Room 437

Monterey, CA 93943-5121

Prof. Jeffrey B. Knorr, Code EC/Ko

Department of Electrical and Computer Engineering
Naval Postgraduate School

833 Dyer Road, Room 437

Monterey, CA 93943-5121

Prof. Richard W. Adler, Code EC/Ab

Department of Electrical and Computer Engineering
Naval Postgraduate School

833 Dyer Road, Room 437

Monterey, CA 93943-5121

Prof. Charles Calvano, Code ME/Ca
Department of Mechanical Engineering
Naval Postgraduate School

Monterey, CA 93943-5146

93

No. Copies
2

10

11

12

13

14

15

CAPT Charles Ristorcelli
Commander

SPAWAR PMW 163

2451 Crystal Park 5
Arlington, VA 22245-5200

CAPT Roger Connell
SPAWAR PMW 163

2451 Crystal Park 5
Arlington, VA 22245-5200

Ralph Skiano

SPAWAR PMW 163

2451 Crystal Park 5
Arlington, VA 22245-5200

Gary Wang

SPAWAR PMW 163

2451 Crystal Park 5
Arlington, VA 22245-5200

Jeffrey Lucas, Code 372JL
NISE-East

400 Marriot Drive

North Charleston, SC 29406-6504

LCDR Roger McGinnis
NAVSEA, Code SEA-03T1
2531 Jefferson Davis Highway
Arlington, VA 22242

Dr. S.T. Li

NRAD, Code 824

53225 Millimeter Street
San Diego, CA 92152-5000

Jay Rockway

NRAD, Code 824

53225 Millimeter Street
San Diego, CA 92152-5000

94

No. Copies
2

16

17

18

Randy Ott

SWL Inc.

3900 Juan Tabo, NE
Albuquerque, NM 87111

Dave Hovey

Mantech Systems

16541 Commerce Drive, Suite 1
King George, VA 22485

Norm Saucier

Lockheed Sanders
PTP1-1813

P.O. Box 868

Nashua, NH 03061-0868

No. Copies

